Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686
4440

VISION AND MISSION

Vision of the Institute

To be among the best of the institutions for engineers and technologists with attitudes, skills and knowledge and to become an epicentre of creative solutions.

Mission of the Institute

To achieve and impart quality education with an emphasis on practical skills and social relevance.

Vision of the Department

To impart technical knowledge and skills required to succeed in life, career and help society to achieve self sufficiency.

Mission of the Department

- To become an internationally leading department for higher learning.
- To build upon the culture and values of universal science and contemporary education.
- To be a center of research and education generating knowledge and technologies which lay groundwork in shaping the future in the fields of electrical and electronics engineering.
- To develop partnership with industrial, R\&D and government agencies and actively participate in conferences, technical and community activities.

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

ACADEMIC CALENDER

2022-23

GRIET/DAA/1H/G/22-23
19 July 2022

Academic Calendar

Academic Year 2022-23

III B.Tech.-FirstSemester

S. No.	EVENT	PERIOD	DURATION	
1	Commencement of First Semester class work	$08-08-2022$		
2	I Spell of Instructions	$08-08-2022$ to 08-10-2022	9 Weeks	
3	I Mid-term Examinations	$10-10-2022$ to 13-10-2022	3 Days	
4	II Spell of Instructions	$14-10-2022$ to 12-12-2022	9 Weeks	
5	II Mid-term Examinations	$13-12-2022$ to 15-12-2022	3 Days	
6	Preparation	$16-12-2022$ to 22-12-2022	1 Week	
7	End Semester Examinations (Theory/ Practical) Regular/ Supplementary	$23-12-2022$ to 13-01-2023	3 Weeks	
8	Commencement of Second Semester, AY 2022-23	$16-01-2023$		

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

2022-23 II sem Subject Allocation sheet

2022-23 I sem Subject allocation sheet

II YEAR(GR20)	Section-A	
Electrical Circuit Analysis	G Sandhya Rani	
Principles of Analog Electronics	P Ravikanth	
DC Machines and Transformers	Dr Phaneedra Babu B	
Electromagnetic Fields	Dr T Suresh Kumar	
Power Generation and Transmission	V Vijaya Rama Raju	
Java Programming for Engine	CSE Dept. Staff	
Constitution of India	D Karuna Kumar	
Value Ethics and Gender Culture	M Prashanth	
Principles of Analog Electronics Lab	U Vijaya Lakshmi/ M Prashanth	
DC Machines and Transformers Lab	V Vijaya Rama Raju / M Rekha	
III YEAR (GR20)	Section-A	
Power System Analysis	Dr J Sridevi	
Power Electronics	Dr Pakkiraiah B	
Microproces sors and Microcontrol lers	Dr D Raveedhra	
Electrical and Hybrid Vehicles (PE-1)	Dr D G Padhan	
Cloud Computing (NPTEL)	P Ravikanth	
Power Systems Lab	Dr J Sridevi / V Usha Rani/ U Vijaya Lakshmi	
Power Electronics Lab	Dr Pakkiraiah B/ G Sandhya Rani	
Microproces sors and Microcontrol lers Lab	Dr P Srividya Devi/ M N Sandhya Rani	
IV YEAR(GR18)	Section-A	Section-B
Power Systems - III	Dr P Srividya Devi	P Prashanth Kumar
Electronics Design	Dr D S N M Rao	Dr D S N M Rao
Electrical and Hybrid Vehicles (PE-III)	D Srinivasa Rao	D Srinivasa Rao
High Voltage Engineering (PE-IV)	A Vinay Kumar	A Vinay Kumar
Robotics	Anitha (Mech)	
Database Management Systems	D Swathi (CSE)	

Electronics Design Lab	P Ravikanth /Dr DSNM Rao	D Karuna Kumar/V Usha Rani
Project work - (Phasel)	A Vinay Kumar/ D Srinivasa Rao	M N Sandhya Rani / G Sandhya Rani
I/I BEE(GR20)	Theory	LAB
EEE (1) BEE	R Anil Kumar/ P Praveen Kumar / P Prashanth Kumar/ K Sudha	
ECE (3) BEE		
IT (3) BEE		
CSBS (1) PEE	M N Sandhya Rani	
Design Thinking		
Mech II/I (GR20)		
BEEE		

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686
4440

Time Table

GRIET/PRIN/06/G/01/22-23 BTech - EEE - A								Wef : 08th Jul 2022 III Year - I Semester		
DAY/ HOUR	9:00-9:55	9-55-10:50	10:50-11:45	11:45-12:25	12:25-1:15	1:15-2:05	2:05-2:55		OOM No	
MONDAY	PE	PE	EHV	BREAK	PELab (Al)/PS Lab (A2)			Theory/Tutorial	4402	
TUESDAY	CC	MC	MC		PSA	PSA	Library	Lab	PE Lab (4405) MC Lab (4502) PS Lab (4504)	
WEDNESDAY	MC	PSA	Mentoring		PS Lab (Al)MC Lab (A2)					
THURSDAY	PSA	PSA	PE		MC Lab (Al) PE Lab (A2)			Class Incharge:	G. Sandhya Rami	
FRIDAY	EHV	EHV	CC		Library	MC	MC			
SATURDAY	$\bigcirc C$	PE	PE		Library	EHV	EHV			
Subject Code	Subject Name			Facultry Code	Faculty Name		Almanac			
GR20AA3012	Power Systoms Anslysis (PSA)			Dr ISD	Dr I. Sridari		1^{*} Spoll of Inatractions		08-08-2022 to 08-10-2022	
GR20A3013	Powor Eloctromics (PE)			Dr PB	Dr Paskirainh B		1^{*} Mid-torm Examinations		10-10-2022 to 13-10-2022	
GR20.A3014	Microprocenvors and Microcontrollers (MC)			Dr DR	Dr D Ravemalhra		2^{24} Spell of Instuctions		14-10-2022 to 18-12-2022	
GR20A3015	Electrical and Hytrid Vahiclos (EHV)			Dr DGP	Dr D. G. Padhan		2 ${ }^{\text {ad }}$ Mid-tame Examinations		09-12-2022 to 13-12-2022	
	Cloud Computing (CC)			PRE	P. Raviant		Proparation		14-12-2022 to 20-12-2022	
GR20A3020	Powar Syutams Lab (PS Lab)			Dr JSD/ VUR/UVL	Dr I. Sridavi U. Vija	Uthyrami/ knhmi	End Samostar Examinations (Theory Practicals) Regular / Supplemantary		21-12-2022 to 10-01-2023	
GR20.A3021	Pouw Electronics Lab (PE Lab)			Dr PB/GSRMRE	$\begin{aligned} & \text { Dr. B. Pakhirs } \\ & \text { Rani/ } \end{aligned}$	$\begin{aligned} & \text { VG. Smaliya } \\ & \text { cokha } \\ & \hline \end{aligned}$				
GR20A.3022	Microprocenvors and Microcontrollers: Lab (MC Lab)			Dr PSVD/MNSSR	Dr. P. Sruidya Dend M. N. Sandhya Rami		Commencement of Second Sementar, A. Y 2022-2023		16-01-2023	

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)
Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

POWER SYSTEM ANALYSIS

Course Code:GR20A3012
L/T/P/C:2/1/0/3

UNIT I

POWER FLOW STUDIES-1

Per-Unit System of Representation. Per-Unit equivalent reactance network of a three phase Power System, Numerical Problems. Ybus formation by Direct Inspection Method, Numerical Problems. Necessity of Power Flow Studies - Data for Power Flow Studies - Derivation of Static load flow equations - Load flow solutions using Gauss Seidel Method: Acceleration Factor, Load flow solution with and without P-V buses, Algorithm and Flowchart. Numerical Load Flow Solution for Simple Power Systems (Max. 3-Buses): Determination of Bus Voltages, Injected Active and Reactive Powers (One Iteration only) and finding Line Flows/Losses for the given Bus Voltages.

UNIT II

POWER FLOW STUDIES-2

Newton Raphson Method in Rectangular and Polar Co-Ordinates form, Load Flow Solution with and without PV Busses- Derivation of Jacobian Elements, Algorithm and Flowchart. Decoupled and Fast Decoupled Methods. - Comparison of Different Load flow Methods - DC load Flow.

UNIT III

FORMATION OF ZBUS

Partial network, Algorithm for the Modification of Zbus Matrix for addition of an element for the following cases: Addition of an element from a new bus and reference, Addition of element from a new bus to an old bus, Addition of element between an old bus to reference and Addition of element between two old buses (Derivations and Numerical Problems)-Modification of Zbus for the changes in network (Problems).

SHORT CIRCUIT ANALYSIS

Symmetrical fault Analysis: Short Circuit Current and MVA Calculations, Fault levels, Application of Series Reactors, Numerical Problems. Symmetrical Component Theory: Symmetrical Component Transformation, Positive, Negative and Zero sequence components: Voltages, Currents and Impedances. Sequence Networks: Positive, Negative and Zero Sequence Networks, Numerical Problems.
Unsymmetrical Fault Analysis: LG, LL, LLG faults with and without fault impedance, Numerical Problems.

UNIT IV

STEADY STATE STABILITY ANALYSIS
Elementary concepts of Steady State, Dynamic and Transient Stability. Description of: Steady State Stability Power Limit, Transfer Reactance, Synchronizing
Power Coefficient, Power Angle Curve and Determination of steady state stability and Methods to improve steady state stability.

UNIT V
POWER SYSTEM TRANSIENT STABILITY ANALYSIS
Derivation of Swing Equation. Determination of Transient Stability by Equal Area Criterion, Application of Equal Area Criterion, Critical Clearing Angle Calculation - Solution of Swing Equation: Point-by-Point Method and Modified Euler's method. Multi machine stability. Methods to improve Transient Stability.

TEXT BOOKS

1. Electric Power Systems by C. L. Wadhwa, New Age International.
2. Modern Power System Analysis by I.J.Nagrath \& D.P.Kothari, Tata McGraw- Hill.
3. P.Kundur, "Power System Stability and Control" McGraw Hill Education, 1994

REFERENCES

1. Power System Analysis by Grainger and Stevenson, Tata McGraw Hill.
2. Power System Analysis by Hadi Saadat, TMH Edition.
3. A. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 1999.
4. B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac, "Electric Power Systems", Wiley, 2012.

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

CO'S AND PO'S MAPPINGS

Academic Year : 2022-23
Semester : II

Name of the Program: B.Tech \qquad Year: \qquad I. \qquad Section: A\& B

Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: \qquad Dr J.Sridevi \qquad .Dept.: ...EEE \qquad
Designation: .PROFESSOR
Course Code : GR20A3012
Course Title: Power System Analysis

Course Outcomes	Program Outcomes													
	PO1	PO2	PO3	PO4	P05	PO6	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
1. Outline the analysis of power system at different concepts, states and conditions.	M			M	M				M		M		M	
2. Formulate the Impedance and admittance matrices and necessity of Power Flow Studies.	M	M		M		M		M	M	M		M		M
3. Solve Power Flow equations using different numerical methods.	H	M	M		H		M			M	M		M	H
4. Evaluate fault currents for different types of faults and analyze short circuit studies.		H		M	M	H		M	M		M	H	M	H
5. Analyze a power system in Transient state, steady state and Stability Constraints in a grid.	H	H		M		H	M	M		M	M	H		H

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

COURSE OBJECTIVES

Academic Year : 2022-23
Semester : I

Name of the Program: B.Tech. \qquad Year: \qquad I. \qquad Section: A\& B

Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: Dr J.Sridevi \qquad Dept.: ...EEE \qquad
Designation: .PROFESSOR

The objective of this course is to provide the student:

S.No.	Course Objectives
1.	Basic concepts of Power flow analysis.
2.	Concepts related to Power flow equations and numerical analysis.
3.	Illustrate about the formation of Z buses and short circuit analysis.
4.	Solve faults current for different types of faults.
5.	Stability constraints in a synchronous grid.

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

COURSE OUTCOMES

Academic Year : 2022-23
Semester : I
Name of the Program: B.Tech........... Year:I............ Section: A\& B
Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: .Dr J.Sridevi

Dept.: ...EEE \qquad
Designation: .PROFESSOR
The expected outcomes of the Course/Subject are:

S.No	Outcomes
1.	Outline the analysis of power system at different concepts, states and conditions.
2.	Formulate the Impedance and admittance matrices and necessity of Power Flow Studies.
3.	Solve Power Flow equations using different numerical methods.
4.	Evaluate fault currents for different types of faults and analyze short circuit studies.
5.	Analyze a power system in Transient state, steady state and Stability Constraints in a grid.

Signature of faculty
Date:

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the outcomes.

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year	$:$ 2022-23
Semester	$:$

Name of the Program: B.Tech........... Year:I............ Section: A\& B
Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty:
.Dr J.Sridevi \qquad Dept.: ...EEE
Designation: .PROFESSOR
Guidelines to study the Course/ Subject: Power System Analysis

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.
The faculty be able to -
- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

COURSE SCHEDULE

Academic Year : 2022-23
Semester : I
Name of the Program: B.Tech \qquad Year \qquad .I. \qquad Section: A\& B

Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: \qquad Dr J.Sridevi \qquad .Dept.: ...EEE

Designation: .PROFESSOR
The Schedule for the whole Course / Subject is:

S. No.	Description	Total No. Of Periods
1.	Power Flow Studies-1	12
2.	Power Flow Studies-2	15
3.	Formation Of Zbus	15
4.	Steady State Stability Analysis	15
5.	Power System Transient Stability Analysis	15

Total No. of Instructional periods available for the course: \qquad .72 Hours / Periods

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad- 500 090, Telangana, India. (040) 66864440
SCHEDULE OF INSTRUCTIONS

COURSE PLAN

Academic Year : 2022-23
Semester : I
Name of the Program: B.Tech. \qquad Year: \qquad I. \qquad Section: A\& B

Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: \qquad Dr J.Sridevi \qquad Dept.: ...EEE
Designation: .PROFESSOR
$\left.\begin{array}{|c|c|c|c|c|}\hline \begin{array}{l}\text { Unit } \\ \text { No. }\end{array} & \begin{array}{c}\text { No. of } \\ \text { Periods }\end{array} & \text { Topics / Sub-Topics } & \begin{array}{c}\text { Outcomes } \\ \text { Nos. }\end{array} & \begin{array}{c}\text { References } \\ \text { (Text Book, } \\ \text { Journal...) }\end{array} \\ \hline 1 & 12 & \text { Power Flow Studies-1 Nos.: to_ }\end{array}\right\}$

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)
Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

SCHEDULE OF INSTRUCTIONS SESSION PLAN

Academic Year : 2022-23

Semester : I
Name of the Program: B.Tech. \qquad Year: I. \qquad Section: A\& B

Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: \qquad .Dr J.Sridevi

Dept.: ...EEE
Designation: .PROFESSOR

S.No	Unit No	No.of periods	Date	Topics
1	1	2	09.08 .2022	Per-Unit System of Representation.
2	1	2	11.08 .2022	Ybus formation by Direct Inspection Method, Numerical Problems. Necessity of Power Flow Studies
3	1	2	16.08 .2022	Load flow solutions using Gauss Seidel Method: Acceleration Factor, Load flow solution without P-V buses
4	1	2	23.08 .2022	Load flow solutions using Gauss Seidel Method: Acceleration Factor, Load flow solution with P-V buses
5	1	2	25.08 .2022	Numerical Load Flow Solution for Simple Power Systems (Max. 3- Buses)
6	2	2	30.08 .2022	Newton Raphson Method in Rectangular Co-Ordinates form
7	2	2	01.09 .2022	Newton Raphson Method in Polar Co-Ordinates form
8	2	2	06.09 .2022	Load Flow Solution with and without PV Busses,Derivation of Jacobian Elements
9	2	2	08.09 .2022	Decoupled and Fast Decoupled Methods. - Comparison of Different Load flow Methods - DC load Flow.
10	3	2	13.09 .2022	Algorithm for the Modification of Zbus Matrix for addition of an element for all cases
11	3	2	15.09 .2022	Modification of Zbus for the changes in network (Problems).
12	3	2	20.09 .2022	Symmetrical fault Analysis: Short Circuit Current and MVA Calculations
13	3	2	22.09 .2022	Symmetrical Component Transformation, Positive, Negative and Zero sequence components

14	3	2	27.09 .2022	Sequence Networks: Positive, Negative and Zero Sequence Networks,
15	3	2	29.09 .2022	LG, LL faults with and without fault impedance
16	3	2	13.10 .2022	LLG faults with and without fault impedance
17	4	2	18.10 .2022	Elementary concepts of Steady State, Dynamic and Transient Stability.
18	4	2	20.10 .2022	Description of: Steady State Stability Power Limit
19	4	2	25.10 .2022	Transfer Reactance, Synchronizing Power Coefficient,
20	4	2	27.10 .2022	Numerical Problems
21	4	2	01.11 .2022	Power Angle Curve
22	4	2	02.11 .2022	Determination of steady state stability
23	4	2	03.11 .2022	Methods to improve steady state stability.
24	5	2	10.11 .2022	Derivation of Swing Equation
25	5	2	15.11 .2022	Determination of Transient Stability by Equal Area Criterion,
26	5	2	17.11 .2022	Application of Equal Area Criterion
27	5	2	22.11 .2022	Critical Clearing Angle Calculation
28	5	2	23.11 .2022	Solution of Swing Equation: Point-by-Point Method and Modified Euler's method.
29	5	2	24.11 .2022	Methods to improve Transient Stability
30	5	2	08.12 .2022	Revison

Signature of faculty
Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

ASSIGNMENT SHEET - 1

Academic Year : 2022-23

Semester : I
Name of the Program: B.Tech........... Year:I............ Section: A\& B
Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty:
.Dr J.Sridevi \qquad Dept.: ...EEE \qquad
Designation: .PROFESSOR
This Assignment corresponds to Unit No. \qquad . 1.

1. The data for 2-bus system is given below. SG1=Unknown; $\mathrm{SD} 1=$ UnknownV1=1.0p.u. ; $\mathrm{S} 1=$ To be determined. SG2=0.25+jQG2 p.u.; SD2=1+j0.5 p.u. The two buses are connected by a transmission line p.u. reactance of 0.5 p.u. Find Q2 and angle of V2. Neglect shunts susceptance of the tie line. Assume $|\mathrm{V} 2|=1.0$, perform two iterations using GS method.
2. Derive static load flow equations?
3. What is the importance of slack bus in Load flow studies?
4. What is acceleration factor? What is its role in GS method for power flow studies?
5. Line data:

Line code $1-2$	$1+\mathrm{j} 6$
$1-3$	$2-\mathrm{j} 3$
$2-3$	$0.8-\mathrm{j} 2.2$
$2-4$	$1.2-\mathrm{j} 2.3$
$3-4$	$2.1-\mathrm{j} 4.2$

Load Data:

> Bus No. P (p.u.) Q (p.u.) V (p.u.)

1	-	-	1.03	Slack
2	0.52	0.23	1.0	PQ
3	0.42	0.32	1.0	PQ
4	0.4	0.12	1.0	PQ

Determine the voltages at all the buses at the end of first iteration using GS method

Outcome Nos.: \qquad

Signature of faculty
Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

ASSIGNMENT SHEET - 2

Academic Year : 2022-23

Semester : I
Name of the Program: B.Tech........... Year:I............ Section: A\& B
Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty:
Dr J.Sridevi. \qquad Dept.: ...EEE \qquad

Designation: .PROFESSOR

This Assignment corresponds to Unit No: \qquad . 2. \qquad

1. The magnitude of voltage at bus- 1 is adjusted to 1.05 p.u. The scheduled loads at Buses 2 and 3 (PQ-Buses) are 2.566 p.u, 1.102 p.u and 1.386 p.u, 0.452 p.u. Using NR-method determine the phase values of the voltage at the load buses 2 and 3.Given Y12 $=10-\mathrm{j} 20 \mathrm{p} . \mathrm{u} ., \mathrm{Y} 13=10-\mathrm{j} 30$ p.u., Y23=16-j32 p.u.
2. Compare GS-method, NR, decoupled and FDLF methods with respect to
i. Number of equations
ii. Memory
iii. Time for iteration
3. In the power system network shown in figure, bus- 1 is slack bus with $\mathrm{V} 1=1.0$ p.u.and bus- 2 is a load bus with $\mathrm{S} 2=2.8+\mathrm{j} 0.6$ p.u. The line impedance is $0.02+\mathrm{j} 0, .04 \mathrm{p} . \mathrm{u}$. using NR method, determine V2.

4. Are Decoupled and Fast decoupled methods of power flow analysis mathematical methods? What are the assumptions for reducing the NR-method to DLF and FDLF methods?

Outcome Nos.:
. 2
Signature of faculty
Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686

ASSIGNMENT SHEET - 3

Academic Year : 2022-23
Semester : I
Name of the Program: B.Tech........... Year:I............ Section: A\& B
Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: \qquad Dr J.Sridevi. \qquad Dept.: ...EEE \qquad
Designation: .PROFESSOR
This Assignment corresponds to Unit No. / Lesson
3.

1. Write an algorithm for the Modification of Zbus Matrix for different cases.
2. Determine the ZBus using building algorithm for the network shown in below figure. The values are in p.u reactance.

3. What do you understand by sequence networks? What is their importance in unsymmetrical fault calculations?
4. An $11 \mathrm{Kv}, 25 \mathrm{MVA}$ synchronous generator has positive, negative and zero sequence reactance of $0.12,0.12$ and 0.08 per unit respectively. The generator neutral is grounded through a reactance of 0.03 pu . A single line to ground fault occurs at the generator terminals. Determine the fault current and line to line voltages. Assume that the generator was unloaded before the fault
5. A $25 \mathrm{MVA}, 13.2 \mathrm{kV}$ alternator with solidly grounded neutral has a subtransient reactance of 0.25 p.u. The negative and zero sequence reactance's are 0.35 and 0.1 p.u. respectively. A single line to ground fault occurs at the terminals of an unloaded alternator; determine the fault current and the line-to-line voltages. Neglect resistance.
6. Derive an expression for the fault current of the three different phases of an alternator, when a LLG fault occurs at the R-phase. Assume that the alternator neutral is isolated

Outcome Nos.: . 3.

Signature of faculty
Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

ASSIGNMENT SHEET - 4

Academic Year : 2022-23
Semester : I
Name of the Program: B.Tech........... Year:I........... Section: A\& B
Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: \qquad Dr J.Sridevi. \qquad Dept.: ...EEE \qquad
Designation: .PROFESSOR
This Assignment corresponds to Unit No 4. \qquad

1. Derive an expression for steady state stability limit of a short transmission line having sending end and receiving end voltages Vs and Vr an impedance Z .
2. A 4-pole, $50 \mathrm{~Hz}, 26 \mathrm{kV}$ turbo alternator has a rating of 100 MVA , p.f 0.8 lag. The moment of inertia of rotor is $8000 \mathrm{~kg}-\mathrm{m} 2$. Determine M and H
3. A 50 Hz , four pole generators rated $100 \mathrm{MVA}, 11 \mathrm{kV}$ has an inertia constant of $8 \mathrm{MJ} / \mathrm{MVA}$.
i) Find the stored energy in the rotor at synchronous speed.
ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW , find rotor acceleration.
iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the change in torque angle and rotor speed in rpm at the end of this period.
4. Explain the point by point method of solving the swing equation. Compare this method with the equal area criterion method.
5. A salient pole synchronous generator is connected to an infinite bus via a line. Derive an expression for electrical power output of the generator and draw p- δ curve.

Outcome Nos.: \qquad . 4. \qquad

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

ASSIGNMENT SHEET - 5

Academic Year : 2022-23
Semester : I
Name of the Program: B.Tech........... Year:I............ Section: A\& B
Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: Dr J.Sridevi. \qquad Dept.: ...EEE \qquad

Designation: .PROFESSOR

This Assignment corresponds to Unit No. / Lesson . 5

1. Derive the expression for critical clearing angle for a system having a generator feeding a large system through a double circuit line.
2. Draw a diagram to illustrate the application of equal area criterion to study Transient stability when there is a sudden increase in the input of generator.
3. A $50 \mathrm{~Hz}, 4$ pole turbo alternator rated $150 \mathrm{MVA}, 11 \mathrm{KV}$ has an inertia constant of $9 \mathrm{MJ} / \mathrm{MVA}$. Find the a) stored energy at synchronous speed b) the rotor acceleration if the input mechanical power is raised to 100 MW when the electrical load is 75 MW . C) The speed at the end of 10 cycles if acceleration is assumed constant at the initial value
4. Give details of assumptions made in the study of steady state and transient stability solution techniques.

Outcome Nos.: \qquad .5 \qquad

Date:

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440

EVALUATION STRATEGY

Academic Year : 2022-23
Semester : I
Name of the Program: B.Tech. \qquad Year: \qquad I. \qquad Section: A\& B

Course/Subject: ...Power System Analysis...Course Code..GR20A3012
Name of the Faculty: \qquad Dr J.Sridevi \qquad Dept.: ...EEE \qquad
Designation: .PROFESSOR

1. TARGET:
A) Percentage for pass 100%
b) Percentage of class: 100%
2. COURSE PLAN\& CONTENT DELIVERY:

- LCD presentation of the Lectures
- Solving exercise problems
- Model questions

3. METHOD OF EVALUATION
3.1 Continuous Assessment Examinations (CAE-I, CAE-I)
3.2 Assignments
3.3 Seminars
3.4 Quiz
3.5 Semester/End Examination

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)
 Department of Electrical and Electronics Engineering

Academic Year: 2022-23
Year:III
Semester:I

MID Exam - I (Descriptive) Subject Name: Power System Analysis Subject Code: GR20A3012

Date: 10/10/2022
Duration:90 min
Max Marks: 15

Note: Answer any ALL questions. All questions carry equal marks.

Q.No	Questions	Marks	CO	BL
1.	The data for 2-bus system is given below. SG1=Unknown; SD1=UnknownV1=1.0p.u.;S1 $=$ To be determined. SG2 $=0.25+\mathrm{jQG} 2$ p.u.; SD2 $=1+\mathrm{j} 0.5$ p.u. The two buses are connected by a transmission line p.u. reactance of 0.5 p.u. Find Q2 and angle of V2. Neglect shunts susceptance of the tie line. Assume \mid V2\|=1.0, perform two iterations using GS method.	[5M]	CO1	BL3
OR				
2.	(a) Derive static load flow equations	[3M]	CO1	BL2
	(b) What is the importance of slack bus in Load flow studies?	[2M]	CO1	BL2
3.	Are Decoupled and Fast decoupled methods of power flow analysis mathematical methods? What are the assumptions for reducing the NR-method to DLF and FDLF methods?	[5M]	CO2	BL4
OR				
4.	In the power system network shown in figure, bus-1 is slack bus with $\mathrm{V} 1=1.0$ p.u.and bus -2 is a load bus with $\mathrm{S} 2=2.8+\mathrm{j} 0.6$ p.u. The line impedance is $0.02+\mathrm{j} 0, .04$ p.u. using NR method, determine V2.	[5M]	CO2	BL4
5.	Discuss about algorithm for the modification of Z bus matrix for addition of element between old bus to reference bus.	[5M]	$\mathrm{CO3}$	BL3
OR				

6.	Form ZBUS by building algorithm for the power system network, data given in the table below.				[5M]	CO3	BL4
	Bus	Self	Bus	Mutual			
	Code	Impedance (p.u.)	Code	Impedance (p.u.)			
	1-2	0.15	3-4	0.15			
	2-3	0.65					
	3-4	0.35					
	4-1	0.75					
	2-4	0.25					

Academic Year: 2022-23
Year:III
Semester:I

MID Exam - I (Objective)
Subject Name: Power System Analysis Subject Code: GR20A3012

Date: 10/10/2022
Duration: $\mathbf{1 0 ~ m i n}$
Max Marks:5M

Roll No:

Note: Answer ALL questions. All questions carry equal marks.

Q.No	Questions	Option	CO	BL
1	Base impedance in ohms is mathematically expressed as: A) [Base voltage in kV (line to line)] * $1000 /$ Base kVA B) [Base voltage in kV (line to line) $]^{\wedge} 2 * 1000 /$ Base kVA C) [Base voltage in kV (line to line) $]^{\wedge} 3 * 1000 /$ Base kVA D) None of these	[]	CO1	BL1
2	On slack bus \qquad and \qquad are specified: A) Voltage Magnitude, Real power B) Voltage Magnitude, Phase angle C) Active, Reactive power D) Active power, phase angle	[]	CO1	BL1
3	Which among the following buses constitute the maximum number in a power system? A) Slack bus B) P Q bus C) P V bus D) None of these	[]	CO1	BL1
4	In load flow studies of a power system, a voltage control bus is specified by A) Real power and reactive power B) Reactive power and voltage magnitude C) Voltage and voltage phase angle D) Real power and voltage magnitude	[]	CO1	BL2
5	In a load flow study a PV bus is treated as a PQ bus when A) Voltage limit is violated B) Active power limit is violated C) Phase angle is high D) Reactive power limit is violated	[]	CO1	BL2
6	Gauss-Seidel interative method can be used for solving a set of A. Linear differential equations only	[]	CO1	BL1

	B. Linear algebraic equations only C. Both linear and nonlinear algebraic equations D. Both linear and nonlinear algebraic differential equations			
7	Determine the order of the Jacobian matrix (with one slack bus) for a 10 bus power system? (Assume 2 buses as PV bus) A) 16×18 B) 16×18 C) 18×16 D) 18×18	[]	CO 2	BL3
8	The impedance per phase of 3-phase transmission line on a base of $100 \mathrm{MVA}, 100 \mathrm{KV}$ is 2 p.u. The value of this impedance on a base of 400MVA and 400 KV would be A) 1.5 p.u B) 1.0 p.u C) $0.5 \mathrm{p} . \mathrm{u}$ D) $0.25 \mathrm{p} . \mathrm{u}$	[]	CO1	BL3
9	The dimension of Z bus matrix for addition of element between old bus to reference bus will be A) Constant B) Increase by 1 C) Decrease by 1 D) None	[]	CO3	BL2
10	The dimension of Z bus matrix for addition of element between new bus to old bus will be $\begin{array}{llll}\text { A) Constant B) Increase by } 1 & \text { C) Decrease by } 1 & \text { D) None }\end{array}$	[]	CO 3	BL2

BL - Bloom's Taxonomy Levels
CO - Course Outcomes
PI - Performance Indicator Code3

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous)
Department of Electrical and Electronics Engineering

Academic Year: 2022-23
Year:III
Semester:I

MID Exam - II (Descriptive)
Subject Name: Power System Analysis
Subject Code: GR20A3012

Date:_13/12/2022
Duration:90 min
Max Marks: 15

Q.No	Questions	Marks	CO	BL
1.	An $11 \mathrm{Kv}, 25 \mathrm{MVA}$ synchronous generator has positive, negative and zero sequence reactance of $0.12,0.12$ and 0.08 per unit respectively. The generator neutral is grounded through a reactance of 0.03 pu . A single line to ground fault occurs at the generator terminals. Determine the fault current and line to line voltages. Assume that the generator was unloaded before the fault	[5M]	CO3	BL4
OR			OR	
2.	Derive an expression for the fault current of the three different phases of an alternator, when a LLG fault occurs at the R-phase. Assume that the alternator neutral is isolated	[5M]	CO3	BL3
3.	A salient pole synchronous generator is connected to an infinite bus via a line. Derive an expression for electrical power output of the generator and draw p- δ curve.	[5M]	CO4	BL4
OR				
4.	A 50 Hz , four pole generators rated $100 \mathrm{MVA}, 11 \mathrm{kV}$ has an inertia constant of $8 \mathrm{MJ} / \mathrm{MVA}$. i) Find the stored energy in the rotor at synchronous speed. ii) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW , find rotor acceleration. iii) If the acceleration calculated in (ii) is maintained for 10 cycles, find the change in torque angle and rotor speed in rpm at the end of this period.	[5M]	CO4	BL5

5.	Draw a diagram to illustrate the application of equal area criterion to study Transient stability when there is a sudden increase in the input of generator.	[5M]	CO5	BL4				
OR								
$\mathbf{6 .}$	Derive the expression for critical clearing angle for a system having a generator feeding a large system through a double circuit line.	[5M]	CO5	BL3				

Academic Year: 2022-23
Year:III
Semester:I

MID Exam - II (Objective)
Subject Name
Subject Code: GR20A3012

Date: \qquad /06/2022

Duration: 10 min
Max Marks:5M

Roll No:

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: Answer ALL questions. All questions carry equal marks.

Q.No	Questions	Option	CO	BL
1	If all the sequence voltages at the fault point in a power system are equal, then fault is \qquad a) LLG fault b) Line to Line fault c) Three phase to ground fault d) LG fault	[]	CO3	BL1
2	For a three-bus network elements in the first colum of bus impedance matrix in p.u. $\operatorname{areZbus}(1,1)=\mathrm{j} 0.08, \operatorname{Zbus}(2,1)=\mathrm{j} 0.03$ and $\operatorname{Zbus}(3,1)$ $=\mathrm{j} 0.05$. Symmetrical three phase fault with zerofault impedance occurs at bus 1 . Faulted bus current I1 (F) is (a) j 6.25 p.u. (b) -j 6.25 p.u. (c) $-\mathrm{j} 12.5 \mathrm{p} . \mathrm{u}$ (d) j 12.5 p.u	[]	CO3	BL2
3	In the case of synchronous machine which one of the following is correct? (a) $\mathrm{Xd}>\mathrm{Xd}^{\prime}>\mathrm{Xd}^{\prime \prime}$ (b) $\mathrm{Xd}<\mathrm{Xd}^{\prime}<\mathrm{Xd}^{\prime \prime}$ (c) $\mathrm{Xd}>\mathrm{Xd}^{\prime}<\mathrm{Xd}$ " (d) $\mathrm{Xd}<\mathrm{Xd}^{\prime}>\mathrm{Xd}^{\prime \prime}$	[]	CO3	BL1
4	Positive component $\mathrm{Ia}^{(1)}=5 \angle 2000 \mathrm{~A}$ when the phase sequence is ACB. Then $\mathrm{Ib}^{(1)}$ is (a) $5 \angle-400 \mathrm{~A}$ (b) $5 \angle 800 \mathrm{~A}$ (c) $-5 \angle-400 \mathrm{~A}$ (d) $-5 \angle 800 \mathrm{~A}$	[]	CO3	BL2
5	Which one of the followings is not correct in transient stability analysis? (a) $\theta=\omega s t+\delta$ (b) $\mathrm{d} \theta / \mathrm{dt}=\omega \mathrm{s}+\mathrm{d} \delta / \mathrm{dt}$ (c) $\mathrm{d}^{2} \theta / \mathrm{dt}^{2}=\mathrm{M} \mathrm{d}^{2} \delta / \mathrm{dt}^{2}$ (d) $\mathrm{d}^{2} \theta / \mathrm{dt}^{2}=\mathrm{d}^{2} \delta / \mathrm{dt}^{2}$	[]	CO5	BL1
6	Swing equation used in transient stability analysis is (a) Non-linear algebraic equation (b) Linear algebraic equation (c) Non-linear differential equation (d) Linear differential equation	[]	CO5	BL1
7	Critical clearing time of a generator can be obtained by knowing (a) power output curves corresponding to pre-fault, during fault and post-fault conditions (b) input power and power output curves corresponding to pre-fault, during fault and post-fault conditions (c) critical clearing angle and swing curve for sustained fault (d) initial rotor angle and swing curve for sustained fault	[]	CO5	BL2

8	Value of M required in the swing equation $\mathrm{M} \mathrm{d}^{2} \delta / \mathrm{dt}^{2}=\mathrm{Pa}$ is obtained from (a) $\mathrm{M}=\pi \mathrm{f} / \mathrm{GH}$ (b) $\mathrm{M}=\pi \mathrm{f} / \mathrm{G}$ I (c) $\mathrm{M}=\mathrm{GH} / \pi \mathrm{f}$ (d) $\mathrm{M}=\mathrm{G}$ $\mathrm{I} / \pi \mathrm{f}$	[]	CO4	BL1
9	Load on a synchronous motor is suddenly increased. It will be stable if at one point of time (a) $\delta=0$ (b) $\mathrm{d} \delta / \mathrm{dt}=0$ (c) $\mathrm{d}^{2} \delta / \mathrm{dt}^{2}=0$ (d) $\mathrm{d} \omega / \mathrm{dt}=0$	[]	CO4	BL1
10	By using which component can the transient stability limit of a power system be improved? (a) Series resistance (b) Series capacitor (c) Series inductor (d) Shunt resistance	[]	CO5	BL1

BL - Bloom's Taxonomy Levels
CO - Course Outcomes
PI - Performance Indicator Code3

Gokaraju Rangaraju Institute of Engineering and Technology (Autonomous)

Bachupally, Kukatpally, Hyderabad - 500 090, Telangana, India. (040) 6686 4440
B.Tech EEE IIIYEAR I SEM RESULT ANALYSIS OF 2020-2024 BATCH

ACADEMIC YEAR 2022-2023 TOTAL. NO. OF STUDENTS REGISTERED $=65$
Overall pass (passed in all subjects) $=50 / 65(77 \%)$

HOD,EEE

III B.Tech I Semester Regular Examinations, December/January 2022/23 MODEL PAPER

Power System Analysis
 (Electrical and Electronics Engineering)

Time: 3 hours
Max Marks: 70
< Note: Type the questions in the given format only, Times New Roman font, size 12 > Instructions:

1. Question paper comprises of Part-A and Part-B
2. Part-A (for 20 marks) must be answered at one place in the answer book.
3. Part-B (for 50 marks) consists of five questions with internal choice, answer all questions.

> PART - A (Answer ALL questions. All questions carry equal marks) $10 * 2=20$ Marks

1. \mathbf{a}.	What are the advantages of per unit system?	$[2]$	CO1	BL1
b.	Write static load flow equations.	$[2]$	CO1	BL2
c.	What are the assumptions made in the FDLF method?	$[2]$	CO2	BL1
d.	In a load flow study, when PV bus is treated as PQ bus?	$[2]$	CO2	BL2
e.	Write impedance matrix if adding branch to the reference bus	$[2]$	CO3	BL1
f.	Write short notes on symmetrical component transformation?	$[2]$	CO3	BL1
g.	Write short notes on power angle curve.	$[2]$	CO4	BL1
h.	Define Transfer reactance	$[2]$	CO4	BL1
i.	Write short notes on Auto Reclosing	$[2]$	CO5	BL1
j.	Write swing equation during Fault and post fault.	$[2]$	CO5	BL2

PART - B

(Answer ALL questions. All questions carry equal marks)
$5 * 10=50$
Marks

2.	For the system shown below obtain i) primitive admittance matrix ii) bus incidence matrix Select ground as reference. Line num Bus code Admittance in pu	[10]	CO1	BL4
1	$1-4$	1.4		
2	$1-2$	1.6		
3	$2-3$	2.4		
4	$3-4$	2.0		
5	1.8	OR		

3.	Explain Gauss-Seidal iterative method for power flow analysis of any given power system with a flow chart.	[10]	CO1	BL3
4.	Discuss about load flow solution with PV bus by using FDLF method	[10]	CO 2	BL3
OR				
5.	a) What are the assumptions made in reducing Decoupled method to fast decoupled method of power flow solution? (b) The voltage at bus- 1 is V1 $=1.06$ p.u. The scheduled loads on bus -2 is PD2=4.0p.u., QD2 $=3.2$ p.u. Given the line admittances $\mathrm{Y} 12=\mathrm{j} 30$ p.u, Y13=j80 p.u. and Y23= j20p.u using FDLF-method with initial at voltage start. Find V2 and V3	[10]	CO 2	$\begin{array}{\|l} \hline \text { BL2 } \\ \text { and } \\ \text { BL4 } \end{array}$
6.	(a) What are the advantages of ZBUS building algorithm? (b) Z bus matrix elements are given by $\mathrm{Z} 11=0.2, \mathrm{Z} 22=0.6, \mathrm{Z} 12=0$ find the modified ZBUS if a branch having an impedance 0.4 p.u. is added from the reference bus (Bus -1) to new bus? Also find the modified ZBUS if a branch having an impedance $0.4 \mathrm{p} . \mathrm{u}$. is added from existing bus (other than reference bus) to new bus?	[10]	CO 3	BL2 And BL4
OR				
7.	Give a step by step procedure of analyzing a L-G fault on a power system by bus impedance matrix method and explain	[10]	CO 3	BL3
8.	Derive the power angle equation of single machine connected to infinite bus	[10]	CO 4	BL4
OR				
9.	A $120 \mathrm{MVA}, 19.5 \mathrm{kV}$ generator has $\mathrm{Xs}=0.15$ per unit and is connected to a transmission line by a transformer rated $150 \mathrm{MVA}, 230 \mathrm{Y} / 18 \Delta \mathrm{kV}$ with $\mathrm{X}=0.1$ per unit. If the base to be used in the calculation is $100 \mathrm{MVA}, 230$ kV for the transmission line, find the per unit values to be used for the transformer and the generator reactance's	[10]	CO 4	BL4
10.	A 200 MVA 11 KV 50 Hz 4 pole turbo generator has an inertia constant of $6 \mathrm{MJ} / \mathrm{MVA}$. (a) Find the stored energy in the rotor at synchronous speed. (b) The machine is operating at a load of 120 MW. When the load suddenly increases to 160 MW, find the rotor retardation. Neglect losses. The retardation calculated above is maintained for 5 cycles, find the change in power angle and rotor speed in rpm at the end of this period	[10]	$\mathrm{CO5}$	BL4
OR				
11.	Derive the transient stability by Equal Area Criterion, What are the application of Equal Area Criterion	[10]	CO5	BL3

Total number of students appeared for the examination (NST)	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66	66
Total number of students attempted the question (NSA)	14	43	44	31	23	16	27	57	42	14	20	42	33	20	59	65	65	65	65	65	65
Attempt \% (TAP) = (NSA/NST)*100	21.21	65.15	66.67	46.97	34.85	24.24	40.91	86.36	63.64	21.21	30.30	63.64	50.00	30.30	89.39	98.48	98.48	98.48	98.48	98.48	98.48
Total number of Students who got more than 60% marks (NSM)	3	35	5	7	12	2	0	38	24	6	7	26	13	13	11	65	65	65	65	65	65
$\begin{aligned} & \text { Attainment \% (TMP) = } \\ & \text { (NSM/NST) } * 100 \end{aligned}$	4.55	53.03	7.58	10.61	18.18	3.03	0.00	57.58	36.36	9.09	10.61	39.39	19.70	19.70	16.67	98.48	98.48	98.48	98.48	98.48	98.48
Score(S)	0	2	0	0	0	0	0	2	1	0	0	1	0	0	0	3	3	3	3	3	3

Note : CO attainment is considered to be zero if the attempt $\%$ is less than $\mathbf{3 0 \%}$

co Validation	1	1	1	2	2	3	3	1,2,3	3	3	4	4	5	5	3,4,5	1	2	3	4	5	1,2,3,4,5
Course Outcome	co1	co1	co1	co2	c02	co3	c03	$\begin{gathered} \mathrm{COO}, \mathrm{CO2}, \\ \mathrm{CO3} \end{gathered}$	co3	co3	co4	co4	cos	cos	$\mathrm{cos}, \mathrm{cos},$ CO5	co1	co2	co3	co4	cos	C01, ${ }^{\text {co2, }}$, $03, \mathrm{CO}, \mathrm{CO} 5$
Marks (Y)	5	3	2	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
No. of COs Shared (z)	1	1	1	1	1	1	1	3	1	1	1	1	1	1	3	1	1	1	1	1	5
Y/z	5	3	2	5	5	5	5	1.66667	5	5	5	5	5	5	1.66667	5	5	5	5	5	1
S*Y/Z	0	6	0	0	0	0	0	3.33333	5	0	0	5	0	0	0	15	15	15	15	15	3

co1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1
CO2	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1
co3	0	0	0	0	0	1	1	1	1	1	0	0	0	0	1	0	0	1	0	0	1
CO4	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	1	0	1
cos	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	1

```
|\begin{array}{l}{\mathrm{ Weighted Average for }}\\{\mathrm{ Attainment relevance }}\end{array}\textrm{CO1}
```

!! Caution !! For CO Values < $\mathbf{2 . 2 5}$ should be justified with Remidial Action Report.
(Autonomous)
Bachupally, Kukatpally, Hyderabad - 500090
Indirect CO Attainments

Academic Year	$2022-23$
Year - Semester	III-I

Department	EEE
Course Name :	Power System Analysis

Course Outcomes survey on Scale 1 (Low) to 5 (High)

Enter Course Outcomes \rightarrow					
CO Number \rightarrow 1,2,3,4,5	1	2	3	4	5
Marks \rightarrow	5	5	5	5	5
S.No/Roll No.	Note : Enter Marks Between Two Green rows.				
First Record / 1	3	3	3	3	3
2	1	1	1	1	3
3	5	5	5	5	5
4	5	4	4	4	4
5	5	5	5	5	5
6	5	4	2	2	3
7	5	4	4	4	4
8	5	4	4	4	5
9	5	5	5	5	5
10	5	5	5	5	5
11	5	5	5	5	5
12	5	5	5	5	5
13	5	5	5	5	5
14	5	2	3	5	5
15	5	5	5	5	5
16	5	5	5	5	5
17	5	5	5	5	5
18	5	5	5	5	5
19	2	5	5	5	5
20	5	5	3	5	5
21	2	2	5	2	5
22	5	5	5	5	2
23	2	5	5	5	2
24	5	5	5	5	3
25	2	5	5	5	3
26	2	5	5	5	3
27	2	5	5	5	3
28	5	5	5	5	5
29	5	5	5	5	5

30	5	5	5	5	5
31	2	5	5	5	5
32	5	5	5	5	5
33	5	5	5	5	5
34	4	4	4	4	3
35	4	4	4	4	3
36	4	4	4	4	3
37	4	4	4	4	3
38	4	4	4	4	3
39	4	4	4	4	3
40	4	4	4	4	3
41	4	4	4	4	3
42	4	4	4	4	3
43	4	4	4	4	3
44	4	4	4	4	3
45	4	4	4	4	3
46	4	4	4	4	1
47	4	4	4	4	3
48	4	4	4	4	3
49	4	4	4	4	4
50	4	4	4	4	3
51	3	2	1	3	2
52	3	2	1	3	2
53	3	2	1	3	2
54	3	2	1	1	2
55	4	4	4	4	1
56	4	4	4	4	3
57	4	4	4	4	1
58	4	4	4	4	3
59	4	4	4	4	3
60	3	2	2	1	2
61	3	2	2	1	2
62	2	2	2	1	2
63	4	4	4	4	3
64	2	2	2	3	2
65	2	2	2	3	2
Last Record 66	5	5	2	2	2

if your class strength is >60 then insert rows above the green row(Last Record), Similarly delete the empty rows above green row if the class strenght is < 60)

Total number of students appeared for the examination (NST)	66	66	66	66	66
Total number of students attempted the question (NSA)	66	66	66	66	66
Attempt \% (TAP) $=($ NSA/NST $) * 100$	100.00	100.00	100.00	100.00	100.00
Total number of Students who got more than 60\% marks (NSM)	55	54	54	58	51

Attainment \% (TMP) $=($ NSM/NST)*100	83.33	81.82	81.82	87.88	77.27
Score(S)	3	3	3	3	3

CO attainment is considered zero if the attempt \% is less than $\mathbf{3 0 \%}$

Indirect CO (COIn)	$\operatorname{co1}$	$\operatorname{co2}$	$\operatorname{co3}$	$\operatorname{co4}$	
	3	3	3	3	3

Bachupally, Kukatpally, Hyderabad - 500090

Direct External CO Attainment

Total Iumber of students appeared forth the examination (NST)	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
Total number of students ${ }^{2} \mathrm{attem}$	60	59	59	60	59	59	60	57	59	57	12	11	54	54	40	36	16	19	46	${ }^{31}$	${ }^{23}$	${ }^{23}$	20	38	${ }^{41}$	${ }^{31}$	28	35	34
	92.31	90.77	90.77	92.31	90.77	90.77	${ }^{92} 31$	87.69	90.77	87.69	18.46	16.92	83.08	83.08	61.54	55.38	24.62	29.23	70.77	47.69	35.38	35.38	30.77	58.46	63.08	47.69	43.08	53.85	52.31
Total number of Students Tha got more than 60\% marks (NSM) min	24	23	39	38	30	16	19	11	18	25	1	6	36	31	32	11	7	2	26	11	1	11	4	17	18	21	17	18	19
$\begin{aligned} & \text { Attainment \% (TMP) }= \\ & (\text { NSM } / \text { NST })^{*} 100 \end{aligned}$	36.92	35.38	60.00	58.46	46.15	24.62	29.23	16.92	27.69	38.46	1.54	9.23	55.38	47.69	49.23	16.92	10.77	3.08	40.00	16.92	1.54	16.92	6.15	26.15	27.69	32.31	26.15	27.69	29.23
Score(s)	1	1	3	2	1	0	0	0	0	1	0	0	2	1	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0

CO attainment is considered zero if the attempt \% is less than 30\%																													
co validation	1	1	2	2	${ }^{3}$	${ }^{3}$	4	4	5	5	1	1	1	1	2	2	2	2	${ }^{3}$	3	3	4	4	4	4	5	5	5	5
Course outcome	cor	cor	co2	co2	${ }^{\text {co3 }}$	co3	co4	co4	cos	cos	cor	cor	co1	${ }^{6}$	co2	co2	co2	co2	${ }^{\text {co3 }}$	${ }^{\text {co3 }}$	${ }^{\text {co3 }}$	co4	co4	co4	co4	cos	cos	cos	cos
Marks (V)	2	2	2	2	2	2	2	2	2	2	5	5	5	5	5	5	5	5	10	5	5	5	5	5	5	5	5	5	5
No. of \cos Shared (z)	1	1	1	1	1	${ }^{1}$	1	${ }^{1}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
y/z	2	2	2	2	2	2	2	2	2	2	5	5	5	5	5	5	5	5	${ }^{10}$	5	5	5	5	5	5	5	5	5	5
$\mathrm{s}^{*} \mathrm{~V} / \mathrm{z}$	2	2	6	4	${ }^{2}$	0	0	0	0	2	0	0	10	5	5	0	0	0	10	0	0	0	0	0	0	5	0	0	0

co1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
co2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
cos	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0
co4	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
cos	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

$\begin{array}{c}\text { Weighted Average for } \\ \text { Attainment relevance }\end{array}$	$\mathrm{CO1}$	CO	CO	CO	$\mathrm{CO5}$		
	2.11	2.15	2.50	1.50	2.29		

!! Caution !! for co values < 2.25 should be justified with Remidial Action Report.

Gokaraju Rangaraju Institute of Engineering and Technology
(Autonomous)
Bachupally, Kukatpally, Hyderabad - 500090

Summary Sheet CO Attainments

Academic Year:	$2022-23$
Course/Subject:	Power System Analysis
Department:	EEE
Section	\#REF!

Name of the Program:	B.Tech
Course Code:	GR2OA2034
Year - Semester:	III-I

Attainment/CO	CO1	CO2	CO3	CO4	CO5
Attainment for Direct Internal CO (Mid I \& II, Assignments, Tutorials, Assessments, etc.)	2.55	2.21	1.90	2.30	2.02
Attainment for Direct External CO (End Semester Exam)	2.11	2.15	2.50	1.50	2.29
Direct CO (0.3*Internal + 0.7*External)	2.24	2.17	2.32	1.74	2.21
Indirect CO	3.00	3.00	3.00	3.00	3.00
Final CO (COFn) $=(0.9 \times$ Direct CO + 0.1 x Indirect CO)	$\mathbf{2 . 3 2}$	$\mathbf{2 . 2 5}$	$\mathbf{2 . 3 9}$	$\mathbf{1 . 8 7}$	$\mathbf{2 . 2 9}$

CO	Course Outcome	Remedial Action for COs Less than 75\% (2.25)	
CO1	Outline the analysis of power system at different concepts, states and conditions.		
CO2	Formulate the Impedance and admittance matrices and necessity of Power Flow Studies.		
CO3	Solve Power Flow equations using different numerical methods.		
CO4	Evaluate fault currents for different types of faults and analyze short circuit studies.	Conducted Tutorial classes to solve more problems.	

Bachupally, Kukatpally, Hyderabad - 500090
Direct Internal CO Attainments

Academic Year	2022-23
Year - Semester	III-I

Department	EEE
Course Name :	Power System Anaysis

P-Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C-Outcomes														
1	M			M	M				M		M		M	
2	M	M		M		M		M	M	M		M		M
3	H	M	M		H		M			M	M		M	H
4		H		M	M	H		M	M		M	H	M	H
5	H	H		M		H	M	M		M	M	H		H

Convert above mappings to scale 1-3

P-Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
C-Outcomes														
CO1	2			2	2				2		2		2	
CO2	2	2		2		2		2	2	2		2		2
CO3	3	2	2		3		2			2	2		2	3
CO4		3		2	2	3		2	2		2	3	2	3
CO5	3	3		2		3	2	2		2	2	3		3
Expected Attainment	2.50	2.50	2.00	2.00	2.33	2.67	2.00	2.00	2.00	2.00	2.00	2.67	2.00	2.75

Fill the below table with obtained attainments in mids, external and Tutorial/Attendence

Final Cos Cof

CO1	CO2	CO3	CO4	CO5				
2.32	2.25	2.39	1.87	2.29				

	Attained PO 1	Attained PO 2	Attained PO 3	Attained PO 4	Attained PO 5	Attained PO 6	Attained PO 7	Attained PO 8	Attained PO 9	Attained PO 10	Attained PO 11	Attained PO 12	Attained PSO1	$\begin{gathered} \text { Attained } \\ \text { PSO2 } \end{gathered}$
CO1	1.55			1.55	1.55				1.55		1.55		1.55	
CO2	1.50	1.50		1.50		1.50		1.50	1.50	1.50		1.50		1.50
CO3	2.39	1.59	1.59		2.39		1.59			1.59	1.59		1.59	2.39
CO4		2.39		1.59	1.59	2.39		1.59	1.59		1.59	2.39	1.59	2.39
CO5	2.39	2.39		1.59		2.39	1.59	1.59		1.59	1.59	2.39		2.39
Attained	1.96	1.97	1.59	1.56	1.84	2.09	1.59	1.56	1.55	1.56	1.58	2.09	1.58	2.17

Note : If Average Attainment of a PO is \#Div/0! Relace the corresponding PO with blank.

the base value in the same unit. The percent value is 100 times the pu value. Both the pu and percentage methods are simpler than the use of actual values. Further, the main advantage in using the pu system of computations is that the result that comes out of the sum, product, quotient, etc. of two or more pu values is expressed in per unit itself.

Per unit value.

The per unit value of any quantity is defined as the ratio of the actual value of the any quantity to the base value of the same quantity as a decimal.

Advantages of per unit system

i. Per unit data representation yields valuable relative magnitude information.
ii. Circuit analysis of systems containing transformers of various transformation ratios is greatly simplified.
iii. The p.u systems are ideal for the computerized analysis and simulation of complex power system problems.
iv. Manufacturers usually specify the impedance values of equivalent in per unit of the equipment rating. If the any data is not available, it is easier to assume its per unit value than its numerical value.
v. The ohmic values of impedances are refereed to secondary is different from the value as referee to primary. However, if base values are selected properly, the p.u impedance is the same on the two sides of the transformer.
vi. The circuit laws are valid in p.u systems, and the power and voltages equations are simplified since the factors of $\sqrt{ } 3$ and 3 are eliminated.

In an electrical power system, the parameters of interest include the current, voltage, complex power (VA), impedance and the phase angle. Of these, the phase angle is dimensionless and the other four quantities can be described by knowing any two of them. Thus clearly, an arbitrary choice of any two base values will evidently fix the other base values.

Normally the nominal voltage of lines and equipment is known along with the complex power rating in MVA. Hence, in practice, the base values are chosen for complex power (MVA) and line voltage (KV). The chosen base MVA is the same for all the parts of the system. However, the base voltage is chosen with reference to a particular section of the system and the other base voltages (with reference to the other sections of the systems, these sections caused by the presence of the transformers) are then related to the chosen one by the turns-ratio of the connecting transformer.

If Ib is the base current in kilo amperes and Vb , the base voltage in kilo volts, then the base MVA is, $\mathrm{Sb}=(\mathrm{VbIb})$. Then the base values of current \& impedance are given by
Base current (kA), $\mathrm{Ib}=\mathrm{MVAb} / \mathrm{KVb}$
$=\mathrm{Sb} / \mathrm{Vb}$
Base impedance, $\mathrm{Zb}=(\mathrm{Vb} / \mathrm{Ib})$
$=\left(\mathrm{KVb}^{2} / \mathrm{MVAb}\right)$
Hence the per unit impedance is given by
Zpu $=$ Zohms/Zb
$=$ Zohms $\left(\mathrm{MVAb} / \mathrm{KVb}^{2}\right)$
In 3-phase systems, KVb is the line-to-line value \& MVAb is the 3-phase MVA. [1-phase MVA = (1/3) 3-phase MVA].

1.11. CHANGE OF BASE.

It is observed from equation (3) that the pu value of impedance is proportional directly to the base

MVA and inversely to the square of the base KV. If Zpunew is the pu impedance required to be calculated on a new set of base values: MVAbnew \& KVbnew from the already given per unit impedance Zpuold, specified on the old set of base values, MVAbold \& KVbold, then we have

Zpunew $=$ Zpu old $($ MVAb new $/$ MVAbold $)(\text { KVbold } / \text { KVbnew })^{2}$
On the other hand, the change of base can also be done by first converting the given pu impedance to its ohmic value and then calculating its pu value on the new set of base values.

Merits and Demerits of pu System

Following are the advantages and disadvantages of adopting the pu system of computations in electric power systems:

Merits:

$>$ The pu value is the same for both 1-phase and \& 3-phase systems
$>$ The pu value once expressed on a proper base, will be the same when refereed to either side of the transformer. Thus the presence of transformer is totally eliminated
$>$ The variation of values is in a smaller range 9nearby unity). Hence the errors involved in pu computations are very less.
$>$ Usually the nameplate ratings will be marked in pu on the base of the name plate ratings, etc.

Demerits:

$>$ If proper bases are not chosen, then the resulting pu values may be highly absurd (such as 5.8 pu, -18.9 pu , etc.). This may cause confusion to the user. However, this problem can be avoided by selecting the base MVA near the high-rated equipment and a convenient base KV in any section of the system.

PU Impedance / Reactance Diagram

For a given power system with all its data with regard to the generators, transformers, transmission lines, loads, etc., it is possible to obtain the corresponding impedance or reactance diagram as explained above. If the parametric values are shown in pu on the properly selected base values of the system, then the diagram is referred as the per unit impedance or reactance diagram. In forming a pu diagram, the following are the procedural steps involved:

1. Obtain the one line diagram based on the given data
2. Choose a common base MVA for the system
3. Choose a base KV in any one section (Sections formed by transformers)
4. Find the base KV of all the sections present
5. Find pu values of all the parameters: R,X, Z, E, etc.
6. Draw the pu impedance/ reactance diagram.

1.12 FORMATION OF Y BUS \& Z BUS

The performance equations of a given power system can be considered in three different frames of reference as discussed below:

Frames of Reference:

Bus Frame of Reference: There are b independent equations ($b=$ no. of buses) relating the bus vectors of currents and voltages through the bus impedance matrix and bus admittance matrix:
EBUS = ZBUS IBUS
IBUS = YBUS EBUS

Bus Frame of Reference: There are b independent equations ($b=$ no. of buses) relating the bus vectors of currents and voltages through the bus impedance matrix and bus admittance matrix:
EBUS = ZBUS IBUS
IBUS = YBUS EBUS
Branch Frame of Reference: There are b independent equations ($b=$ no. of branches of a selected Tree sub-graph of the system Graph) relating the branch vectors of currents and voltages through the branch impedance matrix and branch admittance matrix:
EBR = ZBR IBR
$\mathrm{IBR}=\mathrm{YBR} \mathrm{EBR}$
Loop Frame of Reference: There are b independent equations $(b=n o$. of branches of a selected Tree sub-graph of the system Graph) relating the branch vectors of currents and voltages through the branch impedance matrix and branch admittance matrix:
ELOOP = ZLOOP ILOOP
ILOOP = YLOOP ELOOP
Of the various network matrices refered above, the bus admittance matrix (YBUS) and the bus impedance matrix (ZBUS) are determined for a given power system by the rule of inspection as explained next.

Rule of Inspection

Consider the 3-node admittance network as shown in figure5. Using the basic branch relation: I $=(\mathrm{YV})$, for all the elemental currents and applying Kirchhoff's Current Law principle at the nodal points, we get the relations as under:
At node 1: $\mathrm{I} 1=\mathrm{Y} 1 \mathrm{~V} 1+\mathrm{Y} 3(\mathrm{~V} 1-\mathrm{V} 3)+\mathrm{Y} 6(\mathrm{~V} 1-\mathrm{V} 2)$
At node 2: $\mathrm{I} 2=\mathrm{Y} 2 \mathrm{~V} 2+\mathrm{Y} 5(\mathrm{~V} 2-\mathrm{V} 3)+\mathrm{Y} 6(\mathrm{~V} 2-\mathrm{V} 1)$
At node 3: $0=\mathrm{Y} 3(\mathrm{~V} 3-\mathrm{V} 1)+\mathrm{Y} 4 \mathrm{~V} 3+\mathrm{Y} 5(\mathrm{~V} 3-\mathrm{V} 2)$

These are the performance equations of the given network in admittance form and they can be represented in matrix form as:

$$
\left|\begin{array}{l}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
0
\end{array}\right|=\left|\begin{array}{ccc}
\left(\mathrm{Y}_{1}+\mathrm{Y}_{3}+\mathrm{Y}_{6}\right) & -\mathrm{Y}_{6} & -\mathrm{Y}_{3} \\
-\mathrm{Y}_{6} & \left(\mathrm{Y}_{2}+\mathrm{Y}_{5}+\mathrm{Y}_{6}\right) & -\mathrm{Y}_{5} \\
-\mathrm{Y}_{3} & -\mathrm{Y}_{5} & \left(\mathrm{Y}_{3}+\mathrm{Y}_{4}+\mathrm{Y}_{5}\right)
\end{array}\right|\left|\begin{array}{c}
\mathrm{V}_{1} \\
\mathrm{~V}_{2} \\
\mathrm{~V}_{3}
\end{array}\right|
$$

In other words, the relation of equation (9) can be represented in the form IBUS $=$ YBUS EBUS
Where, YBUS is the bus admittance matrix, IBUS \& EBUS are the bus current and bus voltage vectors respectively.
By observing the elements of the bus admittance matrix, YBUS of equation (9), it is observed that the matrix elements can as well be obtained by a simple inspection of the given system diagram:

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix, YBUS, is equal to the sum total of the admittance values of all the elements incident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yid) of the bus admittance matrix, YBUS, is equal to the negative of the admittance value of the connecting element present between the buses I and j, if any.
This is the principle of the rule of inspection. Thus the algorithmic equations for the rule of inspection are obtained as:
Mi $=\square \square y i j(j=1,2, \ldots \ldots . n)$
$Y_{i j}=-\operatorname{yij}(j=1,2, \ldots \ldots . n)$
For $\mathrm{i}=1,2, \ldots \mathrm{n}, \mathrm{n}=\mathrm{no}$. of buses of the given system, yip is the admittance of element connected between buses i and j and gi is the admittance of element connected between bus i and ground (reference bus).

Bus impedance matrix

In cases where, the bus impedance matrix is also required, then it cannot be formed by direct inspection of the given system diagram. However, the bus admittance matrix determined by the rule of inspection following the steps explained above, can be inverted to obtain the bus impedance matrix, since the two matrices are inter-invertible.

Note: It is to be noted that the rule of inspection can be applied only to those power systems that do not have any mutually coupled elements.

EXAMPLES ON RULE OF INSPECTION:

Problem \#1: Obtain the bus admittance matrix for the admittance network shown aside by the rule of inspection

$$
Y_{\text {BUS }}=\left|\begin{array}{rrr}
16 & -8 & -4 \\
-8 & 24 & -8 \\
-4 & -8 & 16
\end{array}\right|
$$

Problem \#2: Obtain YBUS and ZBUS matrices for the impedance network shown aside by the rule of inspection. Also, determine YBUS for the reduced network after eliminating the eligible unwanted node. Draw the resulting reduced system diagram.

$Z_{B U S}=Y_{B U S}{ }^{-1}$

EXAMPLES ON PER UNIT ANALYSIS:

Problem \#1:

Two generators rated $10 \mathrm{MVA}, 13.2 \mathrm{KV}$ and $15 \mathrm{MVA}, 13.2 \mathrm{KV}$ are connected in parallel to a bus bar. They feed supply to 2 motors of inputs 8 MVA and 12 MVA respectively.

The operating voltage of motors is 12.5 KV . Assuming the base quantities as $50 \mathrm{MVA}, 13.8 \mathrm{KV}$, draw the per unit reactance diagram. The percentage reactance for generators is 15% and that for motors is 20%.

Solution:

The one line diagram with the data is obtained as shown in figure

$$
\mathbf{Y}_{\mathrm{BUS}}{ }^{\text {New }}=\mathbf{Y}_{\mathrm{A}^{-}}-\mathbf{Y}_{\mathrm{B}} \mathbf{Y}_{\mathrm{D}}^{-1} \mathbf{Y}_{\mathrm{C}}
$$

$$
\mathbf{Y}_{\mathrm{BUS}}=\left|\begin{array}{cc}
-8.66 & 7.86 \\
7.86 & -8.86
\end{array}\right|
$$

EXAMPLES ON PER UNIT ANALYSIS:

Problem \#1:

Two generators rated $10 \mathrm{MVA}, 13.2 \mathrm{KV}$ and $15 \mathrm{MVA}, 13.2 \mathrm{KV}$ are connected in parallel to a bus bar. They feed supply to 2 motors of inputs 8 MVA and 12 MVA respectively. The operating voltage of motors is 12.5 KV . Assuming the base quantities as $50 \mathrm{MVA}, 13.8 \mathrm{KV}$, draw the per unit reactance diagram. The percentage reactance for generators is 15% and that for motors is 20%.

Solution:

The one line diagram with the data is obtained as shown in figure P1

Selection of base quantities: $\mathbf{5 0} \mathrm{MVA}, \mathbf{1 3 . 8} \mathrm{KV}$ (Given)
Calculation of pu values:

```
XG1 \(=\mathrm{j} 0.15(50 / 10)(13.2 / 13.8) 2=\mathrm{j} 0.6862 \mathrm{pu}\).
\(\mathrm{XG} 2=\mathrm{j} 0.15(50 / 15)(13.2 / 13.8) 2=\mathrm{j} 0.4574 \mathrm{pu}\).
\(\mathrm{Xm} 1=\mathrm{j} 0.2(50 / 8)(12.5 / 13.8) 2=\mathrm{j} 1.0256 \mathrm{pu}\).
\(\mathrm{Xm} 2=\mathrm{j} 0.2(50 / 12)(12.5 / 13.8) 2=\mathrm{j} 0.6837 \mathrm{pu}\).
\(\mathrm{Eg} 1=\mathrm{Eg} 2=(13.2 / 13.8)=0.9565 \square 00 \mathrm{pu}\)
\(\mathrm{Em} 1=\mathrm{Em} 2=(12.5 / 13.8)=0.9058 \square 00 \mathrm{pu}\)
```

Thus the pu reactance diagram can be drawn as shown in figure P1

Problem \#2:

Draw the per unit reactance diagram for the system shown in figure below. Choose a base of 11 KV, 100 MVA in the generator circuit.

Solution:

The one line diagram with the data is considered as shown in figure.
Selection of base quantities:
$\mathbf{1 0 0}$ MVA, 11 KV in the generator circuit(Given); the voltage bases in other sections are: 11 $(115 / 11.5)=\mathbf{1 1 0} \mathrm{KV}$ in the transmission line circuit and $110(6.6 / 11.5)=\mathbf{6 . 3 1} \mathrm{KV}$ in the motor circuit.

Calculation of pu values:
$\mathrm{XG}=\mathrm{j} 0.1 \mathrm{pu}, \mathrm{Xm}=\mathrm{j} 0.2(100 / 90)(6.6 / 6.31) 2=\mathrm{j} 0.243 \mathrm{pu}$.
$\mathrm{Xt} 1=\mathrm{Xt} 2=\mathrm{j} 0.1(100 / 50)(11.5 / 11) 2=\mathrm{j} 0.2185 \mathrm{pu}$.
$\mathrm{Xt} 3=\mathrm{Xt} 4=\mathrm{j} 0.1(100 / 50)(6.6 / 6.31) 2=\mathrm{j} 0.219 \mathrm{pu}$.
Xlines $=$ j $20(100 / 1102)=\mathrm{j} 0.1652 \mathrm{pu}$.
$\mathrm{Eg}=1.0 \square 00 \mathrm{pu}, \mathrm{Em}=(6.6 / 6.31)=1.045 \square 00 \mathrm{pu}$
Thus the pu reactance diagram can be drawn as shown in fig

Problem \#3:

A 30 MVA, 13.8 KV , 3-phase generator has a sub transient reactance of 15%. The generator supplies 2 motors through a step-up transformer - transmission line - step down transformer arrangement. The motors have rated inputs of 20 MVA and 10 MVA at 12.8 KV with 20% sub transient reactance each. The 3-phase transformers are rated at $35 \mathrm{MVA}, 13.2 \mathrm{KV}-\square \square / 115 \mathrm{KV}-\mathrm{Y}$ with 10% leakage reactance. The line reactance is 80 ohms. Draw the equivalent per unit reactance diagram by selecting the generator ratings as base values in the generator circuit.

Solution:

The one line diagram with the data is obtained as shown in figure P3

Selection of base quantities:
30 MVA, 13.8 KV in the generator circuit (Given);
The voltage bases in other sections are:
$13.8(115 / 13.2)=\mathbf{1 2 0 . 2 3} \mathrm{KV}$ in the transmission line circuit and $120.23(13.26 / 115)=\mathbf{1 3 . 8} \mathrm{KV}$ in the motor circuit.

Calculation of pu values:
$\mathrm{XG}=\mathrm{j} 0.15 \mathrm{pu}$.
$\mathrm{Xm} 1=\mathrm{j} 0.2(30 / 20)(12.8 / 13.8) 2=\mathrm{j} 0.516 \mathrm{pu}$.
$\mathrm{Xm} 2=\mathrm{j} 0.2(30 / 10)(12.8 / 13.8) 2=\mathrm{j} 0.2581 \mathrm{pu}$.
$\mathrm{Xt} 1=\mathrm{Xt} 2=\mathrm{j} 0.1(30 / 35)(13.2 / 13.8) 2=\mathrm{j} 0.0784 \mathrm{pu}$.
Xline $=\mathrm{j} 80(30 / 120.232)=\mathrm{j} 0.17$ pu.

$$
\mathrm{Eg}=1.0 \square 00 \mathrm{pu} ; \mathrm{Em} 1=\mathrm{Em} 2=(6.6 / 6.31)=0.93 \square 00 \mathrm{pu}
$$

Thus the pu reactance diagram can be drawn as shown in figure P3

Problem \#4:

A $33 \mathrm{MVA}, 13.8 \mathrm{KV}$, 3-phase generator has a sub transient reactance of 0.5%. The generator supplies a motor through a step-up transformer - transmission line - step-down transformer arrangement. The motor has rated input of 25 MVA at 6.6 KV with 25% sub transient reactance. Draw the equivalent per unit impedance diagram by selecting 25 MVA (3■), 6.6 KV (LL) as base values in the motor circuit, given the transformer and transmission line data as under:

Step up transformer bank: three single phase units, connected $\square-\mathrm{Y}$, each rated 10 MVA, 13.2/6.6 KV with 7.7 \% leakage reactance and 0.5% leakage resistance;

Transmission line: 75 KM long with a positive sequence reactance of $0.8 \mathrm{ohm} / \mathrm{KM}$ and a resistance of $0.2 \mathrm{ohm} / \mathrm{KM}$; and
Step down transformer bank: three single phase units, connected $\square-\mathrm{Y}$, each rated 8.33
MVA, 110/3.98 KV with 8% leakage reactance and 0.8% leakage resistance;

Solution:

The one line diagram with the data is obtained as shown in figure P4

3-phase ratings of transformers:

$\mathrm{T} 1: 3(10)=30 \mathrm{MVA}, 13.2 / 66.4 \square 3 \mathrm{KV}=13.2 / 115 \mathrm{KV}, \mathrm{X}=0.077, \mathrm{R}=0.005 \mathrm{pu}$.
$\mathrm{T} 2: 3(8.33)=25 \mathrm{MVA}, 110 / 3.98 \square 3 \mathrm{KV}=110 / 6.8936 \mathrm{KV}, \mathrm{X}=0.08, \mathrm{R}=0.008 \mathrm{pu}$.
Selection of base quantities:
$25 \mathrm{MVA}, 6.6 \mathrm{KV}$ in the motor circuit (Given); the voltage bases in other sections are: 6.6 $(110 / 6.8936)=\mathbf{1 0 5 . 3 1 6} \mathrm{KV}$ in the transmission line circuit and $105.316(13.2 / 115)=\mathbf{1 2 . 0 9} \mathrm{KV}$ in the generator circuit.
Calculation of pu values:
$\mathrm{Xm}=\mathrm{j} 0.25 \mathrm{pu} ; \mathrm{Em}=1.0 \square 00 \mathrm{pu}$.
$\mathrm{XG}=\mathrm{j} 0.005(25 / 33)(13.8 / 12.09) 2=\mathrm{j} 0.005 \mathrm{pu} ; \mathrm{Eg}=13.8 / 12.09=1.414 \square 00 \mathrm{pu}$.
$\mathrm{Zt} 1=0.005+\mathrm{j} 0.077(25 / 30)(13.2 / 12.09) 2=0.005+\mathrm{j} 0.0765 \mathrm{pu}$. (ref. to LV side)
$\mathrm{Zt} 2=0.008+\mathrm{j} 0.08(25 / 25)(110 / 105.316) 2=0.0087+\mathrm{j} 0.0873$ pu. (ref. to HV side)
Zline $=75(0.2+\mathrm{j} 0.8)(25 / 105.3162)=0.0338+\mathrm{j} 0.1351 \mathrm{pu}$.

Thus the pu reactance diagram can be drawn as shown in figure

1.13. Exercises for Practice

Problems

1. Determine the reactances of the three generators rated as follows on a common base of 200 MVA, 35 KV : Generator 1: 100 MVA, 33 KV , sub transient reactance of 10%; Generator 2: 150 MVA, 32 KV , sub transient reactance of 8% and Generator 3: $110 \mathrm{MVA}, 30 \mathrm{KV}$, sub transient reactance of 12%.
[Answers: $\mathrm{XG} 1=\mathrm{j} 0.1778, \mathrm{Xg} 2=\mathrm{j} 0.089, \mathrm{Xg} 3=\mathrm{j} 0.16$ all in per unit]
2. A $100 \mathrm{MVA}, 33 \mathrm{KV}, 3$-phase generator has a sub transient reactance of 15%. The generator supplies 3 motors through a step-up transformer - transmission line - step down transformer arrangement. The motors have rated inputs of $30 \mathrm{MVA}, 20 \mathrm{MVA}$ and 50 MVA , at 30 KV with 20% sub transient reactance each. The 3-phase transformers are rated at $100 \mathrm{MVA}, 32$ KV- $\square \square / 110 \mathrm{KV}-\mathrm{Y}$ with 8% leakage reactance. The line has a reactance of 50 ohms. By selecting the generator ratings as base values in the generator circuit, determine the base values in all the other parts of the system. Hence evaluate the corresponding pu values and draw the equivalent per unit reactance diagram.
[Answers: $\mathrm{XG}=\mathrm{j} 0.15, \mathrm{Xm} 1=\mathrm{j} 0.551, \mathrm{Xm} 2=\mathrm{j} 0.826, \mathrm{Xm} 3=\mathrm{j} 0.331, \mathrm{Eg} 1=1.0 \square 00, \mathrm{Em} 1=$ $\mathrm{Em} 2=\mathrm{Em} 3=0.91 \square 00, \mathrm{Xt} 1=\mathrm{Xt} 2=\mathrm{j} 0.0775$ and $\mathrm{Xline}=\mathrm{j} 0.39$ all in per unit $]$
3. A $80 \mathrm{MVA}, 10 \mathrm{KV}$, 3-phase generator has a sub transient reactance of 10%. The generator supplies a motor through a step-up transformer - transmission line - step-down transformer arrangement. The motor has rated input of $95 \mathrm{MVA}, 6.3 \mathrm{KV}$ with 15% sub transient reactance. The step-up 3-phase transformer is rated at $90 \mathrm{MVA}, 11 \mathrm{KV}-\mathrm{Y} / 110 \mathrm{KV}-\mathrm{Y}$ with 10% leakage reactance. The 3-phase step-down transformer consists of three single phase Y- $\square \square$ connected transformers, each rated at $33.33 \mathrm{MVA}, 68 / 6.6 \mathrm{KV}$ with 10% leakage reactance. The line has a reactance of 20 ohms. By selecting the $11 \mathrm{KV}, 100 \mathrm{MVA}$ as base values in the generator circuit, determine the base values in all the other parts of the system. Hence evaluate the corresponding pu values and draw the equivalent per unit reactance diagram.
[Answers: $\mathrm{XG}=\mathrm{j} 1.103, \mathrm{Xm}=\mathrm{j} 0.165, \mathrm{Eg} 1=0.91 \square 00$, $\mathrm{Em}=1.022 \square 00, \mathrm{Xt} 1=\mathrm{j} 0.11, \mathrm{Xt} 2=$ j 0.114 and $\mathrm{Xline}=\mathrm{j} 0.17$ all in per unit]
4. For the three-phase system shown below, draw an impedance diagram expressing all impedances in per unit on a common base of $20 \mathrm{MVA}, 2600 \mathrm{~V}$ on the HV side of the transformer. Using this impedance diagram, find the HV and LV currents.

[Answers: $\mathrm{Sb}=20 \mathrm{MVA} ; \mathrm{Vb}=2.6 \mathrm{KV}(\mathrm{HV})$ and $0.2427 \mathrm{KV}(\mathrm{LV}) ; \mathrm{Vt}=1.0 \square 00, \mathrm{Xt}=\mathrm{j} 0.107$, Zcable $=0.136+\mathrm{j} 0.204$ and Zload $=5.66+\mathrm{j} 2.26, \mathrm{I}=0.158$ all in per unit, I (hv) $=0.7 \mathrm{~A}$ and $\mathrm{I}(\mathrm{lv})=7.5 \mathrm{~A}]$

UNIT II POWER FLOW ANALYSIS

2.1. IMPORTANCE OF POWER FLOW ANALYSIS IN PLANNING AND OPERATION OF POWER SYSTEMS. POWER FLOW STUDY OR LOAD FLOW STUDY

The study of various methods of solution to power system network is referred to as load flow study. The solution provides the voltages at various buses, power flowing in various lines and line losses. Information's that are obtained from a load flow study
The information obtained from a load flow study is magnitude and phase angle of voltages, real and reactive power flowing in each line and the line losses. The load flow solution also gives the initial conditions of the system when the transient behavior of the system is to be studied.
Need for load flow study
The load flow study of a power system is essential to decide the best operation of existing system and for planning the future expansion of the system. It is also essential for designing a new power system.

2.2. STATEMENT OF POWER FLOW PROBLEM

Quantities associated with each bus in a system

Each bus in a power system is associated with four quantities and they are real power (P), reactive power (Q), magnitude of voltage (V), and phase angle of voltage (δ).

Work involved (or) to be performed by a load flow study

(i). Representation of the system by a single line diagram
(ii). Determining the impedance diagram using the information in single line diagram
(iii). Formulation of network equation
(iv). Solution of network equations

Iterative methods to solve load flow problems

The load flow equations are non linear algebraic equations and so explicit solution as not possible. The solution of non linear equations can be obtained only by iterative numerical techniques.

Mainly used for solution of load flow study

The Gauss seidal method, Newton Raphson method and Fast decouple methods.

Flat voltage start

In iterative method of load flow solution, the initial voltages of all buses except slack bus assumed as $1+\mathrm{j} 0$ p.u. This is referred to as flat voltage start

2.3. CLASSIFICATION OF BUSES

Bus

The meeting point of various components in a power system is called a bus. The bus is a conductor made of copper or aluminum having negligible resistance .At some of the buses power is being injected into the network, whereas at other buses it is being tapped by the system lods.

Bus admittance matrix

The matrix consisting of the self and mutual admittance of the network of the power system is called bus admittance matrix (Ybus).

Methods available for forming bus admittance matrix
Direct inspection method.
Singular transformation method.(Primitive network)
Different types of buses in a power system

Types of bus	Known or specified quantities	Unknown quantities or quantities to be determined
Slack or Swing or Reference bus	V, δ	P, Q
Generator or Voltage control or PV bus	P, V	Q, δ
Load or PQ bus	P, Q	V, δ

Need for slack bus

The slack bus is needed to account for transmission line losses. In a power system the total power generated will be equal to sum of power consumed by loads and losses. In a power system only the generated power and load power are specified for buses. The slack bus is assumed to generate the power required for losses. Since the losses are unknown the real and reactive power are not specified for slack bus.

Effect of acceleration factor in load flow study

Acceleration factor is used in gauss seidal method of load flow solution to increase the rate of convergence. Best value of $\mathrm{A} . \mathrm{F}=1.6$

Generator buses are treated as load bus

If the reactive power constraint of a generator bus violates the specified limits then the generator is treated as load bus.

2.4. ITERATIVE SOLUTION USING GAUSS-SEIDEL METHOD - ALGORITHM

Algorithm of Gauss seidal method

Step1: Assume all bus voltage be $1+\mathrm{j} 0$ except slack bus. The voltage of the slack bus is a constant voltage and it is not modified at any iteration
Step 2: Assume a suitable value for specified change in bus voltage which is used to compare the actual change in bus voltage between $\mathrm{K}^{\text {th }}$ and $(\mathrm{K}+1)^{\text {th }}$ iteration
Step 3: Set iteration count $K=0$ and the corresponding voltages are $V_{1}{ }^{0}, V_{2}{ }^{0}, V_{3}{ }^{0}, \ldots \ldots$ $\mathrm{V}_{\mathrm{n}}{ }^{0}$ except slack bus
Step 4: Set bus count $\mathrm{P}=1$
Step 5: Check for slack bus. It is a slack bus then goes to step 12 otherwise go to next step
Step 6: Check for generator bus. If it is a generator bus go to next step. Otherwise go to step 9
Step 7: Set $\left|\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}}\right|=\left|\mathrm{V}_{\mathrm{P}}\right|$ specified and phase of $\left|\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}}\right|$ as the $\mathrm{K}^{\text {th }}$ iteration value if the bus P is a generator bus where $\left|V_{P}\right|$ specified is the specified magnitude of voltage for bus P. Calculate reactive power rating

$$
\mathrm{Q}_{\mathrm{P}}^{\mathrm{K}+1}{ }_{\mathrm{Cal}}=(-1) \operatorname{Imag}\left[\left(\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}}\right)^{\mathrm{A}} \underset{\mathrm{q}=1}{\mathrm{P}-1} \sum_{\mathrm{pq}} \mathrm{Vq}^{\mathrm{k}+1}+\sum_{\mathrm{q}=\mathrm{P}}^{\mathrm{n}} \mathrm{Y}_{\mathrm{pq}} \mathrm{~V}_{\mathrm{q}}{ }^{\mathrm{K}}\right.
$$

Step 8: If calculated reactive power is within the specified limits then consider the bus as generator bus and then set $\mathrm{Q}_{\mathrm{P}}=\mathrm{Q}_{\mathrm{P}}{ }^{\mathrm{K}+1}$ cal for this iteration go to step 10
Step 9 : If the calculated reactive power violates the specified limit for reactive power then treat this bus as load bus
If $\mathrm{QP}^{\mathrm{K}+1}{ }_{\text {Cal }}<\mathrm{Q}_{\mathrm{P} \text { min }}$ then $\mathrm{Q}_{\mathrm{P}}=\mathrm{Q}_{\mathrm{P} \text { min }}$
$\mathrm{Q}_{\mathrm{P}}{ }^{\mathrm{K}+1}$ Cal $>\mathrm{Q}_{\mathrm{P} \text { max }}$ then $\mathrm{Q}_{P}=\mathrm{Q}_{\mathrm{P} \text { max }}$
Step10: For generator bus the magnitude of voltage does not change and so for all iterations the magnitude of bus voltage is the specified value. The phase of the bus voltage can be calculated using
$\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}+1}$ temp $=1 / \mathrm{Y}_{\mathrm{PP}}\left[\left(\mathrm{P}_{\mathrm{P}}-\mathrm{jQ} \mathrm{Q}_{\mathrm{P}} / \mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}}{ }^{*}\right)-\sum \mathrm{Y}_{\mathrm{pq}} \mathrm{V}_{\mathrm{q}}{ }^{\mathrm{K}+1}-\sum \mathrm{Y}_{\mathrm{pq}} \mathrm{V}_{\mathrm{q}}{ }^{\mathrm{K}}\right]$
Step 11: For load bus the ($k+1$)th iteration value of load bus P voltage $V P K+1$ can be calculated using $\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}+1}$ temp $=1 / \mathrm{Y}_{\mathrm{PP}}\left[\left(\mathrm{P}_{\mathrm{P}}-\mathrm{jQ} \mathrm{Q}_{\mathrm{P}} / \mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}}{ }^{*}\right)-\sum \mathrm{Y}_{\mathrm{pq}} \mathrm{V}_{\mathrm{q}}{ }^{\mathrm{K}+1}-\sum \mathrm{Y}_{\mathrm{pq}} \mathrm{V}_{\mathrm{q}}{ }^{\mathrm{K}}\right]$
Step 12: An acceleration factor α can be used for faster convergence. If acceleration factor is specified then modify the $(\mathrm{K}+1)^{\text {th }}$ iteration value of bus P using $\left.\mathrm{V}_{\text {Pacc }}{ }^{\mathrm{K}+1}=\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}}+\underset{{ }_{\mathrm{K}}}{ }+\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}+1}-\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}}\right)$ then Set $V_{P}{ }^{K+1}=V_{\text {Pacc }}{ }^{K+1}$
Step 13: Calculate the change in bus- P voltage using the relation $\Delta V_{P}{ }^{K+1}=V_{P}{ }^{K+1}$ $-V_{P}{ }^{K}$
Step 14: Repeat step 5 to 12 until all the bus voltages have been calculated. For this increment the bus count by 1 go to step 5 until the bus count is n
Step 15: Find the largest of the absolute value of the change in voltage
$\left|\Delta \mathrm{V}_{1}{ }^{\mathrm{K}+1}\right|,\left|\Delta \mathrm{V}_{2}^{\mathrm{K}+1}\right|,\left|\Delta \mathrm{V}_{3}^{\mathrm{K}+1}\right|, \ldots \ldots \ldots \ldots .\left|\Delta \mathrm{V}_{\mathrm{n}}^{\mathrm{K}+1}\right|$
Let this largest value be the $\left|\Delta \mathrm{V}_{\text {max }}\right|$. Check this largest change $\left|\Delta \mathrm{V}_{\text {max }}\right|$ is less than pre specified tolerance. If $\left|\Delta \mathrm{V}_{\text {max }}\right|$ is less go to next step. Otherwise increment the iteration count and go to step 4
Step 16: Calculate the line flows and slack bus power by using the bus voltages

Gauss - Seidal method flow chart

2.5. ITERATIVE SOLUTION USING NEWTON-RAPHSON METHOD - ALGORITHM

Step 1: Assume a suitable solution for all buses except the slack bus. Let $V_{p}=a+j 0$ for P

$$
=2,3, \ldots \ldots n V_{1}=a+j 0
$$

Step 2 : Set the convergence criterion $=\varepsilon 0$
Step 3 : Set iteration count $\mathrm{K}=0$
Step 4 : Set bus count $P=2$
Step 5 : Calculate Pp and Qp using

$$
\begin{aligned}
& \mathrm{Pp}= \sum_{\mathrm{q}=1}^{\mathrm{n}}\left\{\mathrm{e}_{\mathrm{p}}\left(\mathrm{e}_{\mathrm{p}} \mathrm{G}_{\mathrm{pq}}+\mathrm{f}_{\mathrm{p}} \mathrm{~B}_{\mathrm{qp}}\right)+\mathrm{f}_{\mathrm{p}}\left(\mathrm{f}_{\mathrm{p}} \mathrm{G}_{\mathrm{pq}}-\mathrm{e}_{\mathrm{p}} \mathrm{~B}_{\mathrm{pq}}\right)\right\} \\
& \mathrm{n} \\
& \mathrm{Qp}=\sum_{\mathrm{q}=1}^{n}\left\{\mathrm{f}_{\mathrm{p}}\left(\mathrm{e}_{\mathrm{p}} \mathrm{G}_{\mathrm{pq}}+\mathrm{f}_{\mathrm{p}} \mathrm{~B}_{\mathrm{qp}}\right)+\mathrm{e}_{\mathrm{p}}\left(\mathrm{f}_{\mathrm{p}} \mathrm{G}_{\mathrm{pq}}-\mathrm{e}_{\mathrm{p}} \mathrm{~B}_{\mathrm{pq}}\right)\right\}
\end{aligned}
$$

Step 6 : Evaluate $\Delta P_{P}{ }^{K}=P_{\text {spec }}-P_{P}{ }^{K}$
Step 7 : Check if the bus is the question is a PV bus. If yes compare $\mathrm{Q}_{P}{ }^{\mathrm{K}}$ with the limits. If it exceeds the limit fix the Q value to the corresponding limit and treat the bus as PQ for that iteration and go to next step (or) if the lower limit is not violated evaluate $\left|\Delta \mathrm{V}_{\mathrm{P}}\right|^{2}=\left|\mathrm{V}_{\text {spec }}\right|^{2}-\left|\mathrm{V}_{\mathrm{P}}{ }^{\mathrm{K}}\right|^{2}$ and go to step 9

Step 8: Evaluate $\Delta \mathrm{Q}_{\mathrm{P}}{ }^{\mathrm{K}}=\mathrm{Q}_{\text {spec }}-\mathrm{Q}_{\mathrm{P}}{ }^{K}$

Step 9 : Advance bus count $\mathrm{P}=\mathrm{P}+1$ and check if all buses taken in to account if not go to step 5

Step 10 : Determine the largest value of $\left|\Delta V_{P}\right|^{2}$
Step 11: If $\Delta V_{P}<\varepsilon$ go to step 16
Step 12: Evaluate the element of Jacobin matrices $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}, \mathrm{~J}_{5}$ and J_{6}
Step 13: Calculate $\Delta \mathrm{e}_{\mathrm{P}}{ }^{\mathrm{K}}$ and $\Delta \mathrm{f}_{\mathrm{P}}{ }^{K}$
Step 14: Calculate $e_{P}{ }^{K+1}=e_{P}{ }^{K}+\Delta e_{P}{ }^{K}$ and $f_{P}{ }^{K+1}=f_{P}{ }^{K}+\Delta f_{P}{ }^{K}$
Step 15 : Advance count (iteration) $\mathrm{K}=\mathrm{K}+1$ and go to step 4
Step 16: Evaluate bus and line power and print the result

Iterative solution using Newton-Raphson method - Flow chart

2.6. ITERATIVE SOLUTION USING FAST DECOUPLED LOAD FLOW METHOD ALGORITHM

Step 1: Assume a suitable solution for all buses except the slack bus. Let $\mathrm{Vp}=1+\mathrm{j} 0$ for $\mathrm{P}=2,3$, . n and $V=a+j 0$

Step2: Set the convergence criterion $=\varepsilon 0$

Step3: Set iteration count $\mathrm{K}=0$
Step 4: Set bus count $\mathrm{P}=2$
Step 5: Calculate Pp and Qp using

$$
\begin{aligned}
& P \mathrm{p}={ }^{\mathrm{n}} \mathrm{~V}|\mathrm{VpVqYpq}| \cos (\theta \mathrm{pq}+\delta \mathrm{P}-\delta \mathrm{q}) \\
& \mathrm{q}=1 \\
& \mathrm{Qp}=\Sigma|\mathrm{VpVqYpq}| \sin (\theta \mathrm{pq}+\delta \mathrm{P}-\delta \mathrm{q}) \\
& \mathrm{q}=1
\end{aligned}
$$

Step 6: Compute the real and reactive power mismatches ΔP^{K} and ΔQ^{K}. If the mismatches Are with in desirable tolerance the iteration end

Step 7: Normalize the mismatches by dividing each entry by its respective bus voltage magnitude $\Delta \mathrm{P}^{\mathrm{K}}=\Delta \mathrm{P}_{2}{ }^{\mathrm{K}} / \mathrm{V}_{2}{ }^{\mathrm{K}}$

$$
\Delta \mathrm{P}_{3}{ }^{\mathrm{K}} / \mathrm{V}_{3}{ }^{\mathrm{K}}
$$

$$
\begin{gathered}
\Delta \mathrm{P}_{\mathrm{n}}{ }^{\mathrm{K}} / \mathrm{V}_{\mathrm{n}}{ }^{\mathrm{K}} \\
\Delta \mathrm{Q}^{\mathrm{K}}=\Delta \mathrm{Q}_{2}{ }^{\mathrm{K}} / \mathrm{V}_{2}{ }^{\mathrm{K}} \\
\Delta \mathrm{Q}_{3}{ }^{\mathrm{K}} / \mathrm{V}_{3}{ }^{\mathrm{K}}
\end{gathered}
$$

$$
\Delta \mathrm{Q}_{\mathrm{n}}{ }^{\mathrm{K}} / \mathrm{V}_{\mathrm{n}}{ }^{\mathrm{K}}
$$

Step 8: Solve for the voltage magnitude and the correction factors $\Delta \mathrm{V}^{K}$ and $\Delta \delta^{K}$ by using the constant matrices B ' and B " which are extracted from the bus admittance matrix Y Bus
$\left[\mathrm{B}^{\prime}\right] \Delta \mathrm{\delta}^{\mathrm{K}}=\Delta \mathrm{P}^{\mathrm{K}}$
$\left[B^{\prime \prime}\right] \Delta Q^{K}=\Delta Q^{K}$
Step 9: Up date the voltage magnitude and angel vectors

$$
\begin{aligned}
& \delta^{K+1}=\delta^{K}+\Delta \delta^{K} \\
& V^{K+1}=V^{K}+\Delta V^{K}
\end{aligned}
$$

Step 10: Check if all the buses are taken into account if yes go to next step otherwise go to next step. Otherwise go to step 4
Step 11: Advance iteration count $K=K+1$ go to step 3
Step 12: Evaluate bus and load powers and print the results

2.7 ITERATIVE SOLUTION USING FAST DECOUPLED LOAD FLOW METHOD FLOW CHART

Advantages and disadvantages of Gauss-Seidel method

Advantages: Calculations are simple and so the programming task is lessees. The memory requirement is less. Useful for small systems;
Disadvantages: Requires large no. of iterations to reach converge .Not suitable for large systems. Convergence time increases with size of the system

Advantages and disadvantages of N.R method

Advantages: Faster, more reliable and results are accurate, require less number of iterations;
Disadvantages: Program is more complex, memory is more complex.

2.8 COMPARE THE GAUSS SEIDEL AND NEWTON RAPHSON METHODS OF LOAD FLOW STUDY

S.No	G.S	N.R	FDLF
1	Require large number of iterations to reach convergence	Require less number of iterations to reach convergence.	Require more number of iterations than N.R method
2	Computation time per iteration is less	Computation time per iteration is more	Computation time per iteration is less
3	It has linear convergence characteristics	It has quadratic convergence characteristics	
4	The number of iterations required for convergence increases with size of the system	The number of iterations are independent of the size of the system	The number of iterations are does not dependent of the size of the system
5	Less memory requirements	More memory requirements.	Less memory requirements than N.R.method.

Y matrix of the sample power system as shown in fig. Data for this system is given in table.

Bus code	Impedance $Z_{i \mathbf{k}}$	Line charging y_{i+2}
$1-k$	$0.02+0.06$	0.03
$1-3$	$0.08+0.02$	0.025
2.3	$0.06+\boldsymbol{0 . 1 8}$	0.020

UNIT III FAULT ANALYSIS - BALANCED FAULTS

3.1. IMPORTANCE SHORT CIRCUIT (OR) FOR FAULT ANALYSIS
 Fault

A fault in a circuit is any failure which interferes with the normal flow of current. The faults are associated with abnormal change in current, voltage and frequency of the power system.

Faults occur in a power system

The faults occur in a power system due to
(i). Insulation failure of equipment
(ii). Flashover of lines initiated by a lighting stroke
(iii). Due to permanent damage to conductors and towers or due to accidental faulty operations.

Various types of faults

(i) Series fault or open circuit fault

One open conductor fault
Two open conductor fault
(ii) Shunt fault or short circuit fault.

Symmetrical fault or balanced fault

- Three phase fault

Unsymmetrical fault or unbalanced fault

- Line to ground (L-G) fault
- Line to Line (L-L) fault
- Double line to ground (L-L-G) fault

Relative frequency of occurrence of various types of fault

Types of fault	Relative frequency of occurrence of faults
Three phase fault	5%
Double line to ground fault	10%
Line to Line fault	15%
Line to ground fault	70%

Symmetrical fault or balanced three phase fault

This type of fault is defined as the simultaneous short circuit across all the three phases. It occurs infrequently, but it is the most severe type of fault encountered. Because the network is balanced, it is solved by per phase basis using Thevenins theorem or bus impedance matrix or KVL, KCL laws.

3.2. BASIC ASSUMPTIONS IN FAULT ANALYSIS OF POWER SYSTEMS.

(i). Representing each machine by a constant voltage source behind proper reactance which may be X", X', or X
(ii). Pre-fault load current are neglected
(iii). Transformer taps are assumed to be nominal
(iv). Shunt elements in the transformers model that account for magnetizing current and core loss are neglected
(v). A symmetric three phase power system is conducted
(vi). Shunt capacitance and series resistance in transmission are neglected
(vii). The negative sequence impedances of alternators are assumed to be the same as their positive sequence impedance $\mathrm{Z}^{+}=\mathrm{Z}^{-}$

Need for short circuit studies or fault analysis

Short circuit studies are essential in order to design or develop the protective schemes for various parts of the system .To estimate the magnitude of fault current for the proper choice of circuit breaker and protective relays.

Bolted fault or solid fault

A Fault represents a structural network change equivalent with that caused by the addition of impedance at the place of a fault. If the fault impedance is zero, the fault is referred as bolted fault or solid fault.

Reason for transients during short circuits

The faults or short circuits are associated with sudden change in currents. Most of the components of the power system have inductive property which opposes any sudden change in currents, so the faults are associated with transients.

Doubling effect

If a symmetrical fault occurs when the voltage wave is going through zero then the maximum momentary short circuit current will be double the value of maximum symmetrical short circuit current. This effect is called doubling effect.

DC off set current

The unidirectional transient component of short circuit current is called DC off set current.

3.3. SYMMETRICAL FAULT

In symmetrical faults all the three phases are short circuited to each other and to earth also. Such faults are balanced and symmetrical in the sense that the voltage and current of the system remains balanced even after the fault and it is enough if we consider any one phase

Short circuit capacity of power system or fault level.

Short circuit capacity (SCC) or Short circuit MVA or fault level at a bus is defined as the product of the magnitude of the pre fault bus voltage and the post fault current

$$
\text { SCC or Short circuit MVA }=\left|V_{\text {prefault }}\right| \times\left|I_{f}\right|
$$

$$
\begin{equation*}
\mathrm{SCC}=\frac{1}{x_{t h}} \text { p.u } M V A \tag{OR}
\end{equation*}
$$

Synchronous reactance or steady state condition reactance

The synchronous reactance is the ratio of induced emf and the steady state rms current. It is the sum of leakage reactance $\left(X_{l}\right)$ and the armature reactance $\left(X_{a}\right)$.

$$
X_{d}=X_{a}+X_{l}
$$

Sub transient reactance

The synchronous reactance is the ratio of induced emf on no load and the sub transient symmetrical rms current.

$X_{d}^{\prime \prime}=X_{l}+\frac{1}{\frac{1}{X_{a}}+\frac{1}{X_{f}}+\frac{1}{X_{d w}}}$

Transient reactance

The synchronous reactance is the ratio of induced emf on no load and the transient symmetrical rms current.

$$
X_{d}^{\prime}=X_{l}+\frac{1}{\frac{1}{X_{a}}+\frac{1}{X_{f}}}
$$

Fault current in fig., if the Pre-fault voltage at the fault point is 0.97 p.u.

j0.15

Thevenin's theorem:

(i). Fault current $=\mathrm{E}_{\mathrm{th}} /\left(\mathrm{Z}_{\mathrm{th}}+\mathrm{Z}_{\mathrm{f}}\right)$
(ii). Determine current contributed by the two generators $\mathrm{IG}_{1}=\mathrm{I}_{\mathrm{f}} *\left(\mathrm{Z}_{2} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)\right)$
$\mathrm{IG}_{2}=$ If $*\left(\mathrm{Z}_{1} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)\right)$
(iii). Determine Post fault voltage $\mathrm{V}_{\mathrm{if}}=\mathrm{V}_{\mathrm{i}}{ }^{\circ}+\Delta \mathrm{V}=\mathrm{V}^{\circ}+\left(-\mathrm{Z}_{\mathrm{i} 2}{ }^{*} \mathrm{IG}_{\mathrm{i}}\right)$
(iv). Determine post fault voltage line flows $\mathrm{I}_{\mathrm{ij}}=\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}\right) / \mathrm{Z}_{\mathrm{ij}}$ series
(v). Short circuit capacity $\mathrm{I}_{\mathrm{f}}=\left|\mathrm{E}_{\mathrm{th}}\right|^{2} / \mathrm{X}_{\mathrm{th}}$

3.4. FAULT ANALYSIS USING Z-BUS MATRIX - ALGORITHM AND FLOW CHART. Bus impedance matrix

Bus impedance matrix is the inverse of the bus admittance matrix. The matrix consisting of driving point impedance and transfer impedances of the network is called as bus impedance matrix. Bus impedance matrix is symmetrical.

Methods available for forming bus impedance matrix

(i). Form bus admittance matrix and take the inverse to get bus impedance matrix.
(ii). Using bus building algorithm.
(iii). Using L-U factorization of Y-bus matrix.

3.5 SOLVED PROBLEMS

Problem 1

A synchronous generator and a synchronous motor each rated $20 \mathrm{MVA}, 12.66 \mathrm{KV}$ having 15% reactance are connected through transformers and a line as shown in fig. the transformers are rated 20MVA, $12.66 / 66 \mathrm{KV}$ and $66 / 12.66 \mathrm{KV}$ with leakage reactance of 10% each. The line has a reactance of 8% on base of 20MVA, 66 KV . The motor is drawing 10 MW at 0.8 leading power factors and a terminal voltage 11 KV when symmetrical three phase fault occurs at the motors terminals. Determine the generator and motor currents. Also determine the fault current.

UNIT- IV

SYMMETRICAL COMPONENTS AND UNBALANCED FAULT ANALYSIS

4.1. INTRODUCTION TO SYMMETRICAL COMPONENTS

Symmetrical components of a 3 phase system

In a 3 phase system, the unbalanced vectors (either currents or voltage) can be resolved into three balanced system of vectors.
They are Positive sequence components
Negative sequence components
Zero sequence components
Unsymmetrical fault analysis can be done by using symmetrical components.

Positive sequence components

It consists of three components of equal magnitude, displaced each other by 120° in phase and having the phase sequence abc .

Negative sequence components

It consists of three components of equal magnitude, displaced each other by 120° in phase and having the phase sequence acb .

Zero sequence components

It consists of three phasors equal in magnitude and with zero phase displacement from each other.

$$
\mathrm{I}_{\mathrm{a} 0}=\mathrm{I}_{\mathrm{b} 0}=\mathrm{I}_{\mathrm{c} 0}
$$

Sequence operator

In unbalanced problem, to find the relationship between phase voltages and phase currents, we use sequence operator ' \boldsymbol{a} '.
$a=1 \angle 120^{\circ}=-0.5+\mathrm{j} 0.866$

$$
a^{2}=1 \angle 240^{\circ}=-0.5-j 0.866
$$

$$
1+a+a^{2}=0
$$

Unbalanced currents from symmetrical currents

Let, $\mathrm{I}_{\mathrm{a}}, \mathrm{Ib}, \mathrm{I}_{\mathrm{c}}$ be the unbalanced phase currents
Let, Ia0, Ia1, Ia2 be the symmetrical components of phase a

$$
\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{b}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]
$$

Determination of symmetrical currents from unbalanced currents.

Let, $\mathrm{I}_{\mathrm{a}}, \mathrm{I} \mathrm{l}, \mathrm{I}_{\mathrm{c}}$ be the unbalanced phase currents
Let, Ia0, Ia1, I 22 be the symmetrical components of phase a

$$
\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{c}
I_{a} \\
I_{b} \\
I_{b}
\end{array}\right]
$$

4.2. SEQUENCE IMPEDANCES SEQUENCE NETWORKS

The sequence impedances are the impedances offered by the power system components or elements to +ve , -ve and zero sequence current.
The single phase equivalent circuit of power system consisting of impedances to current of any one sequence only is called sequence network.

The phase voltage across a certain load are given as

$$
\begin{aligned}
& V_{a}=(176-j 132) \text { Volts } \\
& V_{b}=(-128-j 96) \text { Volts } \\
& V_{c}=(-160+j 100) \text { Volts }
\end{aligned}
$$

Compute positive, negative and zero sequence component of voltage

Solution:

$$
\begin{aligned}
& V_{\mathrm{a} 1}=\frac{1}{3}\left(V_{\mathrm{a}}+\beta V_{\mathrm{b}}+\beta^{2} V_{\mathrm{e}}\right) \\
& V_{\mathrm{a} 2}=\frac{1}{3}\left(V_{\mathrm{a}}+\beta^{2} V_{\mathrm{b}}+\beta V_{\mathrm{e}}\right) \\
& V_{\mathrm{a} 0}=\frac{1}{3}\left(V_{\mathrm{a}}+V_{\mathrm{b}}+V_{\mathrm{e}}\right) \\
& V_{\mathrm{a} 1}=\frac{1}{3}\left\{176-j 132+1\left\lfloor 120^{\circ} \times(-128-j 96)+1 \mid 240^{\circ}(-160+j 100)\right\}\right. \\
& V_{\mathrm{a} 1}=(163.24-j 35.10) \text { Volts } \\
& V_{\mathrm{a} 2}=\frac{1}{3}\left\{176-j 132+1\left\lfloor 240^{\circ}(-128-j 96)+1\left\lfloor 120^{\circ}(-160+j 100)\right\}\right.\right. \\
& V_{\mathrm{a} 2}=(50.1-j 53.9) \text { Volts } \\
& V_{\mathrm{a} 0}=\frac{1}{3}(176-j 132-128-j 96-160+j 100) \mathrm{Volts}
\end{aligned}
$$

A balanced delta connected load is connected to a three phase system and supplied to it is a current of 15 amps . If the fuse is one of the lines melts, compute the symmetrical components of line currents.

Solution:

$$
\begin{aligned}
I_{\mathrm{a}} & =-I_{\mathrm{c}}, \quad I_{\mathrm{b}}=0 \\
I_{\mathrm{a}} & =15 \underline{0^{\circ} ; \quad I_{\mathrm{e}}=15 \underline{180^{\circ}}=-15} \\
\therefore \quad I_{\mathrm{a} 1} & =\frac{1}{3}\left(I_{\mathrm{a}}+\beta I_{\mathrm{e}}+\beta^{2} I_{\mathrm{b}}\right) \\
& =(7.5+j 4.33) \text { Amp. } \\
I_{\mathrm{a} 2} & =\frac{1}{3}\left(I_{\mathrm{a}}+\beta^{2} I_{\mathrm{e}}+\beta I_{\mathrm{b}}\right) \\
& =(7.5+j 4.33) \text { Amp. } \\
I_{\mathrm{a} 0} & =\frac{1}{a}\left(I_{\mathrm{a}}+I_{\mathrm{b}}+I_{\mathrm{c}}\right)=0.0
\end{aligned}
$$

Draw zero sequence network of the power system as shown in fig.

Solution:

Reference bus

Draw zero sequence network of the power system as shown in fig.

Solution:

Reference bus

Draw zero sequence network of the power system as shown in fig. Data are given below.

$$
\begin{aligned}
\mathrm{G}: & x_{\mathrm{f} 0}=0.05 \mathrm{pu} \\
\mathrm{M}: & x_{\mathrm{m} 0}=0.03 \mathrm{pu} \\
\mathrm{~T}_{1}: & x_{\mathrm{T} 1}=0.12 \mathrm{pu} \\
\mathrm{~T}_{2}: & x_{\mathrm{T} 2}=0.10 \mathrm{pu} \\
\text { Line-1:} & x_{\mathrm{L} .10}=0.70 \mathrm{pu} \\
\text { Line-2: } & x_{\mathrm{T} 20}=0.70 \mathrm{pu}
\end{aligned}
$$

Solution:

4.3. REPRESENTATION OF SINGLE LINE TO GROUND, LINE TO LINE AND DOUBLE LINE TO GROUND FAULT CONDITIONS.

A $50 \mathrm{MVA}, 11 \mathrm{KV}$, synchronous generator has a sub transient reactance of 20%.The generator supplies two motors over a transmission line with transformers at both ends as shown in fig. The motors have rated inputs of 30 and 15 MVA , both 10 KV , with 25% sub transient reactance. The three phase transformers are both rated $60 \mathrm{MVA}, 10.8 / 121 \mathrm{KV}$, with leakage reactance of 10% each. Assume zero sequence reactance for the generator and motors of 6% each. Current limiting reactors of 2.5 ohms each are connected in the neutral of the generator and motor number 2 . The zero sequence reactance of the transmission line is 300 ohms. The series reactance of the line is 100 ohms. Draw the positive, negative and zero sequence networks.

Assume that the negative sequence reactance of each machine is equal to its subtransient reactance.

Solution:

Assume base power $=50 \mathrm{MVA}$
base voltage $=\mathbf{1 1} \mathbf{K V}$

Base voltage of transmission line

$$
=11 \times \frac{121}{108}=123.2 \mathrm{KV}
$$

Motor base voltage $=123.2 \times \frac{10.8}{121}=11 \mathrm{KV}$
Transformer reactance,

$$
x_{\mathrm{T} 1}=x_{\mathrm{T} 2}=0.10 \times \frac{50}{60} \times\left(\frac{10.8}{11}\right)^{2}=0.0805 \mathrm{pu}
$$

Line reactance (positive \& negative sequence)

$$
=\frac{100 \times 50}{(123.2)^{2}} \mathrm{pu}=0.33 \mathrm{pu}
$$

Line reactance (zero sequence)

$$
=\frac{300 \times 50}{(123.2)^{2}}=0.99 \mathrm{pu}
$$

Reactance of motor 1 (positive and negative sequence)

$$
=0.25 \times \frac{50}{30} \times\left(\frac{10}{11}\right)^{2}=0.345 \mathrm{pu}
$$

Zero-sequence reactance of motor 1

$$
\begin{aligned}
& =0.06 \times \frac{50}{30} \times\left(\frac{10}{11}\right)^{2} \\
& =0.082 \mathrm{pu}
\end{aligned}
$$

Reactance of motor 2 (positive and negative sequence)

$$
=0.25 \times \frac{50}{15} \times\left(\frac{10}{11}\right)^{2}=0.69 \mathrm{pu}
$$

Zero-sequence reactance of motor 2

$$
=0.06 \times \frac{50}{15} \times\left(\frac{10}{11}\right)^{2}=0.164 \mathrm{pu}
$$

Reactance of reactors $=2.5 \times \frac{50}{(11)^{2}}=1.033 \mathrm{pu}$

Positive, negative and zero-sequence diagram are given below:

Fig. 9.10(a): Positive sequence network.

Fig. 9.10(b): Negative sequence network.

Fig. 9.10(c): Zero-sequence network.

4.4. UNBALANCED FAULT ANALYSIS PROBLEM FORMULATION

A $30 \mathrm{MVA}, 13.2 \mathrm{KV}$ synchronous generator has a solidly grounded neutral. Its positive, negative and zero sequence impedances are $0.30,0.40$ and 0.05 p.u respectively. Determine the following:
a) What value of reactance must be placed in the generator neutral so that the fault current for a line to ground fault of zero fault impedance shall not exceed the rated line current?
b) What value of resistance in the neutral will serve the same purpose?
c) What value of reactance must be placed in the neutral of the generator to restrict the fault current to ground to rated line current for a double line to ground fault?
d) What will be the magnitudes of the line currents when the ground current is restricted as above?
e) As the reactance in the neutral is indefinitely increased, what are the limiting values of the line currents?

UNIT V STABILITY ANALYSIS

5.1. IMPORTANCE OF STABILITY ANALYSIS IN POWER SYSTEM PLANNING AND OPERATION

Power system stability
The stability of an interconnected power system means is the ability of the power system is to return or regain to normal or stable operating condition after having been subjected to some form of disturbance.

5.2. CLASSIFICATION OF POWER SYSTEM STABILITY - ANGLE AND VOLTAGE STABILITY
 Power system stability is classified

5.3 ANGLE AND VOLTAGE STABILITY

Rotor angle stability

Rotor angle stability is the ability of interconnected synchronous machines of a power system to remain in synchronism.

Steady state stability

Steady state stability is defined as the ability of the power system to bring it to a stable condition or remain in synchronism after a small disturbance.

Steady state stability limit

The steady sate stability limit is the maximum power that can be transferred by a machine to receiving system without loss of synchronism

Transient stability

Transient stability is defined as the ability of the power system to bring it to a stable condition or remain in synchronism after a large disturbance.

Transient stability limit

The transient stability limit is the maximum power that can be transferred by a machine to a fault or a receiving system during a transient state without loss of synchronism.Transient stability limit is always less than steady state stability limit

Dynamic stability

It is the ability of a power system to remain in synchronism after the initial swing (transient stability period) until the system has settled down to the new steady state equilibrium condition

Voltage stability

It is the ability of a power system to maintain steady acceptable voltages at all buses in the system under normal operating conditions and after being subjected to a disturbance.

Causes of voltage instability

A system enters a state of voltage instability when a disturbance, increase in load demand, or change in system condition causes a progressive and uncontrollable drop in voltage. The main factor causing instability is the inability of the power system to meet the demand for reactive power.

Determination of critical clearing angle and time

Power angle equation and draw the power angle curve

$$
P=\frac{V_{s} V_{r}}{X_{T}} \sin \delta
$$

Where, P - Real Power in watts
$\mathrm{V}_{\mathrm{s}}-$ Sending end voltage; V_{r} - Receiving end voltage
X_{T} - Total reactance between sending end receiving end δ-Rotor angle.

Power angle curve

Maximum power transfer.

$$
P_{\max }=\frac{V_{s} V_{r}}{X_{T}}
$$

Swing equation for a SMIB (Single machine connected to an infinite bus bar) system.

$$
\frac{H}{\pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{e}
$$

Since M in p. $u=H / \pi f$

$$
\mathrm{M}_{\frac{\mathrm{d}^{2} \delta}{\mathrm{dt}^{2}}}=\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{e}}
$$

Where $\mathrm{H}=$ inertia constant in MW/MVA
$\mathrm{f}=$ frequency in Hz
$\mathrm{M}=$ inertia constant in p.u

Swing curve

The swing curve is the plot or graph between the power angle δ and time t. From the nature of variations of δ the stability of a system for any disturbance can be determined.

3 machine system having ratings G_{1}, G_{2} and G_{3} and inertia constants M_{1}, M_{2} and M_{3}. What is the inertia constants M and H of the equivalent system.

$$
\begin{aligned}
& M_{e q}=\frac{M_{1} G_{1}}{G_{\mathrm{b}}}+\frac{M_{2} G_{2}}{G_{\mathrm{b}}}+\frac{M_{3} G_{3}}{G_{\mathrm{b}}} \\
& \mathrm{H}_{\mathrm{eq}}=\frac{\pi f \mathrm{M}_{\mathrm{eq}}}{G_{\mathrm{b}}}
\end{aligned}
$$

Where $\mathrm{G}_{1}, \mathrm{G} 2, \mathrm{G} 3$ - MVA rating of machines 1,2 , and 3
$\mathrm{Gb}=$ Base MVA or system MVA

Assumptions made in stability studies.

(i). Machines represents by classical model
(ii). The losses in the system are neglected (all resistance are neglected)
(iii). The voltage behind transient reactance is assumed to remain constant.
(iv). Controllers are not considered (Shunt and series capacitor)
(v). Effect of damper winding is neglected.

Equal Area Criterion

The equal area criterion for stability states that the system is stable if the area under $\mathrm{P}-\delta$ curve reduces to zero at some value of δ.

This is possible if the positive (accelerating) area under $\mathrm{P}-\delta$ curve is equal to the negative (decelerating) area under $\mathrm{P}-\delta$ curve for a finite change in δ. hence stability criterion is called equal area criterion.

Critical clearing angle.

The critical clearing angle, is the maximum allowable change in the power angle δ before clearing the fault, without loss of synchronism.
The time corresponding to this angle is called critical clearing time, .It can be defined as the maximum time delay that can be allowed to clear a fault without loss of synchronism.

Methods of improving the transient stability limit of a power system.
(i).Reduction in system transfer reactance
(ii).Increase of system voltage and use AVR
(iii).Use of high speed excitation systems
(iv). Use of high speed reclosing breakers

Numerical integration methods of power system stability
i. Point by point method or step by step method
ii. Euler method
iii. Modified Euler method
iv. Runge-Kutta method(R-K method)

5.4 SINGLE MACHINE INFINITE BUS (SMIB) SYSTEM: DEVELOPMENT OF SWING EQUATION.

Fig. 11.1: Flow of powers in a synchronous generator.
Consider a synchronous generator developing an electromagnetic torque T_{e} (and a corresponding electromagnetic power P_{α}) while operating at the synchronous speed w_{s}. If the input torque provided by the prime mover, at the generater shaft is T_{i}, then under steady-state conditions (i.e., without any disturbance)

$$
\begin{equation*}
T_{\mathrm{e}}=T_{\mathrm{i}} \tag{11,10}
\end{equation*}
$$

Here we have neglected any retarding torque due to rotatianal losses. Therefore we have

$$
\begin{align*}
T_{\mathrm{e}} w_{\mathrm{s}} & =T_{\mathrm{i}} w_{\mathrm{s}} \tag{11.11}\\
\text { and } \quad T_{\mathrm{i}} w_{\mathrm{s}}-T_{\mathrm{e}} w_{\mathrm{s}} & =P_{\mathrm{i}}-P_{\mathrm{e}}=0
\end{align*}
$$

If there is a doparture from steady ${ }^{2}$ ote occure, for example a change in load a then input power P_{i} is not equal to $P_{\boldsymbol{\sigma}}$ if the armature resistance is neglected. Therefore left-side of eqn. (11.12) is not zero and an accelerating torque comes into play. If P_{a} is the corresponding accelerating (or decelerating) power, then

$$
\begin{equation*}
P_{\mathrm{i}}-P_{\mathrm{e}}=M \cdot \frac{d^{2} \theta_{\mathrm{e}}}{d t^{2}}+D \cdot \frac{d \theta_{\mathrm{e}}}{d t}=P_{\mathrm{a}} \tag{11.13}
\end{equation*}
$$

Where M has been defined in eqn. (11.8) or eqn. (11.9). D is a damping coefficient and θ_{e} is the electrical angular position of the rotor. It is more convenient to measure the angular position of the rotor with respect to a synchronously rotating frame of reference. Let

$$
\begin{align*}
\delta & =\theta_{e}-w_{s} t \tag{11.14}\\
\therefore \quad \frac{d^{2} \theta_{e}}{d t^{2}} & =\frac{d^{2} \delta}{d t^{2}} \tag{11.15}
\end{align*}
$$

Where δ is the power angle of the synchronous machine. Neglecting damping (i.e., $D=0$) and substituting eqn. (11.15) in eqn. (11.13), we get,

$$
\begin{equation*}
M \cdot \frac{d^{2} \delta}{d t^{2}}=P_{\mathrm{i}}-P_{\mathrm{e}} M W \tag{11.16}
\end{equation*}
$$

$$
\begin{equation*}
\frac{G H}{\pi f} \frac{d^{2} \delta}{d t^{2}}=P_{\mathrm{i}}-P_{\mathrm{e}} M W \tag{11.17}
\end{equation*}
$$

Dividing throughout by G, the MVA rating of the machine,

$$
\begin{equation*}
M(\mathrm{pu}) \frac{d^{2} \delta}{d t^{2}}=\left(P_{\mathrm{i}}-P_{\mathrm{o}}\right) \mathrm{pu} \tag{11.18}
\end{equation*}
$$

where $\quad M(\mathrm{pu})=\frac{H}{\pi f}$
or $\quad \frac{H}{\pi f} \frac{d^{2} \delta}{d t^{2}}=\left(P_{\mathrm{i}}-P_{\mathrm{e}}\right) \mathrm{pu}$
Eqn. (11.20) is called swing equation. It describes the rotor dynamics for a synchronous machine. Although damping is ignored but it helps to stabilizer the system. Damping must be considered in dynamic stability study.

A 400 MVA synchronous machine has $\mathrm{H}_{1}=4.6 \mathrm{MJ} /$ MVA and a 1200 MVA machines $\mathrm{H}_{2}=3.0$ MJ/MVA. Two machines operate in parallel in a power plant. Find out Heq relative to a 100 MVA base.

Solutions:

Total kinetic energy of the two machines is

$$
K E=4.6 \times 400+3 \times 1200=5440 \mathrm{MJ}
$$

Using the formula given in eqn. (11.28),

$$
\begin{aligned}
& \quad H_{\mathrm{eq}}=\left(\frac{400}{100}\right) \times 4.6+\left(\frac{1200}{100}\right) \times 3 \\
& \therefore \quad H_{\mathrm{eq}}=54.4 \mathrm{MJ} / \mathrm{MVA} \\
& \text { or, equivalent inertia relative to a } 100 \mathrm{MVA} \text { base is }
\end{aligned}
$$

$$
H_{\mathrm{eq}}=\frac{\mathrm{KE}}{\text { System base }}=\frac{5440}{100}=54.4 \mathrm{ME} / \mathrm{MVA} \text { Ans. }
$$

A 100 MVA , two pole, 50 Hz generator has moment of inertia $40 \times 103 \mathrm{~kg}-\mathrm{m} 2$.what is the energy stored in the rotor at the rated speed? What is the corresponding angular momentum? Determine the inertia constant h.

